Non-cystic fibrosis bronchiectasis: The long road to multidrug resistant bacteria

Multidrug resistance and bronchiectasis

Authors

  • José Miguel Sahuquillo-Arce Department of Microbiology, IIS/University and Polytechnic Hospital La Fe, Valencia, Spain
  • Raúl Méndez Department of Pneumology, IIS/University and Polytechnic Hospital La Fe, Valencia, Spain
  • Alicia Hernández-Cabezas Department of Microbiology, IIS/University and Polytechnic Hospital La Fe, Valencia, Spain
  • Rosario Menéndez Department of Pneumology, IIS/University and Polytechnic Hospital La Fe, Valencia; CIBER Respiratory Diseases, Valencia, Spain

Keywords:

Disease progression, multidrug‑resistant bacteria, noncystic fibrosis bronchiectasis

Abstract

Bronchiectasis is a common progressive respiratory disease characterized by exacerbations and recurrent chest infections with high morbidity and reduced quality of life. Cole«SQ»s vicious cycle model explains the evolution of this disease, in which an initial insult in the bronchi, often on a background of impaired mucociliary clearance or bactericidal activity, results in persistence of microbes in the sinobronchial tree and microbial colonization. Microbial overgrowth then causes infection and chronic inflammation, resulting in tissue damage, and impaired mucociliary motility. Subsequent antimicrobial treatments, microbiota interactions, and hypermutation can favor the development of resistance and the appearance of multidrug-resistant (MDR) bacteria. In this paper, we summarize the current knowledge on how bacteria become MDR in noncystic fibrosis bronchiectasis, and which are the most common bacterial pathogens, excluding Mycobacteria.

References

McShane PJ, Naureckas ET, Tino G, Strek ME. Non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med 2013;188:647-56.

Gaga M, Bentley AM, Humbert M, Barkans J, O′Brien F, Wathen CG, et al. Increases in CD4+ T lymphocytes, macrophages, neutrophils and interleukin 8 positive cells in the airways of patients with bronchiectasis. Thorax 1998;53:685-91.

King P, Bennett-Wood V, Hutchinson P, Robins-Browne R, Holmes P, Freezer N, et al. Bactericidal activity of neutrophils with reduced oxidative burst from adults with bronchiectasis. APMIS 2009;117:133-9.

Alcaraz V, Polverino E, Rosales E, Giron RM, Mendendez R, Vendrell M, et al. Exacerbations and pneumonia in bronchiectasis: Clinical and microbiological characterization. Eur Respir J 2015;46:PA367.

Einarsson GG, Comer DM, McIlreavey L, Parkhill J, Ennis M, Tunney MM, et al. Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax 2016;71:795-803.

Martin C, Burgel PR, Lepage P, Andréjak C, de Blic J, Bourdin A, et al. Host-microbe interactions in distal airways: Relevance to chronic airway diseases. Eur Respir Rev 2015;24:78-91.

Marsh RL, Kaestli M, Chang AB, Binks MJ, Pope CE, Hoffman LR, et al. The microbiota in bronchoalveolar lavage from young children with chronic lung disease includes taxa present in both the oropharynx and nasopharynx. Microbiome 2016;4:37.

Lal CV, Travers C, Aghai ZH, Eipers P, Jilling T, Halloran B, et al. The airway microbiome at birth. Sci Rep 2016;6:31023.

Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med 2014;6:237ra65.

Segal LN, Alekseyenko AV, Clemente JC, Kulkarni R, Wu B, Gao Z, et al. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 2013;1:19.

Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young VB, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio 2015;6:e00037.

Rogers GB, van der Gast CJ, Cuthbertson L, Thomson SK, Bruce KD, Martin ML, et al. Clinical measures of disease in adult non-CF bronchiectasis correlate with airway microbiota composition. Thorax 2013;68:731-7.

Taylor SL, Wesselingh S, Rogers GB. Host-microbiome interactions in acute and chronic respiratory infections. Cell Microbiol 2016;18:652-62.

Tunney MM, Einarsson GG, Wei L, Drain M, Klem ER, Cardwell C, et al. Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am J Respir Crit Care Med 2013;187:1118-26.

Purcell P, Jary H, Perry A, Perry JD, Stewart CJ, Nelson A, et al. Polymicrobial airway bacterial communities in adult bronchiectasis patients. BMC Microbiol 2014;14:130.

Segal LN, Clemente JC, Tsay JC, Koralov SB, Keller BC, Wu BG, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th phenotype. Nat Microbiol 2016;1:16031.

Rogers GB, Zain NM, Bruce KD, Burr LD, Chen AC, Rivett DW, et al. A novel microbiota stratification system predicts future exacerbations in bronchiectasis. Ann Am Thorac Soc 2014;11:496-503.

Rogers GB, van der Gast CJ, Serisier DJ. Predominant pathogen competition and core microbiota divergence in chronic airway infection. ISME J 2015;9:217-25.

Pragman AA, Berger JP, Williams BJ. Understanding persistent bacterial lung infections: Clinical implications informed by the biology of the microbiota and biofilms. Clin Pulm Med 2016;23:57-66.

Sahuquillo-Arce JM, Yarad-Auad F, Hernández-Cabezas A. Biofilms: A biological antimicrobial resistance system. In: Méndez-Vilas A, editor. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education. Badajoz, Spain: Formatex; 2013.

Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol 2009;11:1034-43.

Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 2005;175:7512-8.

Chandra J, McCormick TS, Imamura Y, Mukherjee PK, Ghannoum MA. Interaction of Candida albicans with adherent human peripheral blood mononuclear cells increases C. albicans biofilm formation and results in differential expression of pro- and anti-inflammatory cytokines. Infect Immun 2007;75:2612-20.

Leid JG, Shirtliff ME, Costerton JW, Stoodley P. Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 2002;70:6339-45.

Ader F, Jawhara S, Nseir S, Kipnis E, Faure K, Vuotto F, et al. Short term Candida albicans colonization reduces Pseudomonas aeruginosa-related lung injury and bacterial burden in a murine model. Crit Care 2011;15:R150.

Johns BE, Purdy KJ, Tucker NP, Maddocks SE. Phenotypic and genotypic characteristics of small colony variants and their role in chronic infection. Microbiol Insights 2015;8:15-23.

Kahl BC, Becker K, Löffler B. Clinical significance and pathogenesis of staphylococcal small colony variants in persistent infections. Clin Microbiol Rev 2016;29:401-27.

Menéndez R, Polverino E, Méndez R, Rosales-Mayor E, Amara-Elori I, Posadas T, et al. Risk Factors for Bronchiectasis Exacerbations Caused by Multidrug-Resistant Microorganisms. 1 st World Bronchiectasis Conference Abstract Book; 2016. Available from: http://www.world-bronchiectasis-conference.com. [Last accessed on 2016 Nov 25].

McDonnell MJ, Jary HR, Perry A, MacFarlane JG, Hester KL, Small T, et al. Non cystic fibrosis bronchiectasis: A longitudinal retrospective observational cohort study of Pseudomonas persistence and resistance. Respir Med 2015;109:716-26.

Izhakian S, Wasser WG, Fuks L, Vainshelboim B, Fox BD, Fruchter O, et al. Lobar distribution in non-cystic fibrosis bronchiectasis predicts bacteriologic pathogen treatment. Eur J Clin Microbiol Infect Dis 2016;35:791-6.

Alhede M, Bjarnsholt T, Givskov M, Alhede M. Pseudomonas aeruginosa biofilms: Mechanisms of immune evasion. Adv Appl Microbiol 2014;86:1-40.

Kuang Z, Hao Y, Walling BE, Jeffries JL, Ohman DE, Lau GW. Pseudomonas aeruginosa elastase provides an escape from phagocytosis by degrading the pulmonary surfactant protein-A. PLoS One 2011;6:e27091.

Azghani AO. Pseudomonas aeruginosa and epithelial permeability: Role of virulence factors elastase and exotoxin A. Am J Respir Cell Mol Biol 1996;15:132-40.

Leidal KG, Munson KL, Johnson MC, Denning GM. Metalloproteases from Pseudomonas aeruginosa degrade human RANTES, MCP-1, and ENA-78. J Interferon Cytokine Res 2003;23:307-18.

Hegde M, Wood TK, Jayaraman A. The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA14 virulence through the las quorum-sensing pathway. Appl Microbiol Biotechnol 2009;84:763-76.

Varga JJ, Barbier M, Mulet X, Bielecki P, Bartell JA, Owings JP, et al. Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains. BMC Genomics 2015;16:883.

Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin Infect Dis 2002;34:634-40.

Maciá MD, Blanquer D, Togores B, Sauleda J, Pérez JL, Oliver A. Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother 2005;49:3382-6.

Aaron SD, Vandemheen KL, Ramotar K, Giesbrecht-Lewis T, Tullis E, Freitag A, et al. Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. JAMA 2010;304:2145-53.

Mistry DV, Stockley RA. The cleavage specificity of an IgA1 protease from Haemophilus influenzae. Virulence 2011;2:103-10.

Jalalvand F, Su YC, Mörgelin M, Brant M, Hallgren O, Westergren-Thorsson G, et al. Haemophilus influenzae protein F mediates binding to laminin and human pulmonary epithelial cells. J Infect Dis 2013;207:803-13.

Kress-Bennett JM, Hiller NL, Eutsey RA, Powell E, Longwell MJ, Hillman T, et al. Identification and characterization of msf, a novel virulence factor in Haemophilus influenzae. PLoS One 2016;11:e0149891.

Pang B, Hong W, Kock ND, Swords WE. Dps promotes survival of nontypeable Haemophilus influenzae in biofilm communities in vitro and resistance to clearance in vivo. Front Cell Infect Microbiol 2012;2:58.

Al-Jubair T, Mukherjee O, Oosterhuis S, Singh B, Su YC, Fleury C, et al. Haemophilus influenzae type F hijacks vitronectin using protein H to resist host innate immunity and adhere to pulmonary epithelial cells. J Immunol 2015;195:5688-95.

Duell BL, Su YC, Riesbeck K. Host-pathogen interactions of nontypeable Haemophilus influenzae: From commensal to pathogen. FEBS Lett 2016;590:3840-53.

Taylor SL, Rogers GB, Chen AC, Burr LD, McGuckin MA, Serisier DJ. Matrix metalloproteinases vary with airway microbiota composition and lung function in non-cystic fibrosis bronchiectasis. Ann Am Thorac Soc 2015;12:701-7.

King PT, Sharma R, O′Sullivan K, Selemidis S, Lim S, Radhakrishna N, et al. Nontypeable Haemophilus influenzae induces sustained lung oxidative stress and protease expression. PLoS One 2015;10:e0120371.

Wurzel DF, Marchant JM, Yerkovich ST, Upham JW, Petsky HL, Smith-Vaughan H, et al. Protracted bacterial bronchitis in children: Natural history and risk factors for bronchiectasis. Chest 2016;150:1101-8.

Roberts MC, Soge OO, No DB. Characterization of macrolide resistance genes in Haemophilus influenzae isolated from children with cystic fibrosis. J Antimicrob Chemother 2011;66:100-4.

Atkinson CT, Kunde DA, Tristram SG. Acquired macrolide resistance genes in Haemophilus influenzae? J Antimicrob Chemother 2015;70:2234-6.

Molina JM, Córdoba J, Esteban R, Laínez B, Monsoliu A, Gregori V, et al. Study of the betalactam resistance of Haemophilus influenzae conferred by the bla (ROB-1) gene. Rev Esp Quimioter 2002;15:148-51.

Pettigrew MM, Tsuji BT, Gent JF, Kong Y, Holden PN, Sethi S, et al. Effect of fluoroquinolones and macrolides on eradication and resistance of Haemophilus influenzae in chronic obstructive pulmonary disease. Antimicrob Agents Chemother 2016;60:4151-8.

Pérez-Vázquez M, Román F, García-Cobos S, Campos J. Fluoroquinolone resistance in Haemophilus influenzae is associated with hypermutability. Antimicrob Agents Chemother 2007;51:1566-9.

Boyle-Vavra S, Daum RS. Community-acquired methicillin-resistant Staphylococcus aureus: The role of Panton-Valentine leukocidin. Lab Invest 2007;87:3-9.

McNeil JC. Staphylococcus aureus-antimicrobial resistance and the immunocompromised child. Infect Drug Resist 2014;7:117-27.

Trong HN, Prunier AL, Leclercq R. Hypermutable and fluoroquinolone-resistant clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother 2005;49:2098-101.

Pozzi C, Waters EM, Rudkin JK, Schaeffer CR, Lohan AJ, Tong P, et al. Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog 2012;8:e1002626.

Chekabab SM, Silverman RJ, Lafayette SL, Luo Y, Rousseau S, Nguyen D. Staphylococcus aureus inhibits IL-8 responses induced by Pseudomonas aeruginosa in airway epithelial cells. PLoS One 2015;10:e0137753.

Smith CM, Sandrini S, Datta S, Freestone P, Shafeeq S, Radhakrishnan P, et al. Respiratory syncytial virus increases the virulence of Streptococcus pneumoniae by binding to penicillin binding protein 1a. A new paradigm in respiratory infection. Am J Respir Crit Care Med 2014;190:196-207.

Lee JY, Song JH, Ko KS. Recombination rates of Streptococcus pneumoniae isolates with both erm(B) and mef(A) genes. FEMS Microbiol Lett 2010;309:163-9.

Mostowy R, Croucher NJ, Hanage WP, Harris SR, Bentley S, Fraser C. Heterogeneity in the frequency and characteristics of homologous recombination in pneumococcal evolution. PLoS Genet 2014;10:e1004300.

de la Campa AG, Ferrandiz MJ, Tubau F, Pallarés R, Manresa F, Liñares J. Genetic characterization of fluoroquinolone-resistant Streptococcus pneumoniae strains isolated during ciprofloxacin therapy from a patient with bronchiectasis. Antimicrob Agents Chemother 2003;47:1419-22.

Hare KM, Grimwood K, Chang AB, Chatfield MD, Valery PC, Leach AJ, et al. Nasopharyngeal carriage and macrolide resistance in Indigenous children with bronchiectasis randomized to long-term azithromycin or placebo. Eur J Clin Microbiol Infect Dis 2015;34:2275-85.

Hirakata Y, Mizuta Y, Wada A, Kondoh A, Kurihara S, Izumikawa K, et al. The first telithromycin-resistant Streptococcus pneumoniae isolate in Japan associated with erm(B) and mutations in 23S rRNA and riboprotein L4. Jpn J Infect Dis 2007;60:48-50.

Sahuquillo-Arce JM, Selva M, Perpiñán H, Gobernado M, Armero C, López-Quílez A, et al. Antimicrobial resistance in more than 100,000 Escherichia coli isolates according to culture site and patient age, gender, and location. Antimicrob Agents Chemother 2011;55:1222-8.

Rodríguez-Baño J, Cisneros JM, Cobos-Trigueros N, Fresco G, Navarro-San Francisco C, Gudiol C, et al. Diagnosis and antimicrobial treatment of invasive infections due to multidrug-resistant Enterobacteriaceae. Guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology. Enferm Infecc Microbiol Clin 2015;33:337.e1-337.e21.

Huang YJ, Sethi S, Murphy T, Nariya S, Boushey HA, Lynch SV. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J Clin Microbiol 2014;52:2813-23.

Swenson CE, Sadikot RT. Achromobacter respiratory infections. Ann Am Thorac Soc 2015;12:252-8.

Grimwood K, Bell SC, Chang AB. Antimicrobial treatment of non-cystic fibrosis bronchiectasis. Expert Rev Anti Infect Ther 2014;12:1277-96.

Barker AF, Couch L, Fiel SB, Gotfried MH, Ilowite J, Meyer KC, et al. Tobramycin solution for inhalation reduces sputum Pseudomonas aeruginosa density in bronchiectasis. Am J Respir Crit Care Med 2000;162(2 Pt 1):481-5.

Barker AF, O′Donnell AE, Flume P, Thompson PJ, Ruzi JD, de Gracia J, et al. Aztreonam for inhalation solution in patients with non-cystic fibrosis bronchiectasis (AIR-BX1 and AIR-BX2): Two randomised double-blind, placebo-controlled phase 3 trials. Lancet Respir Med 2014;2:738-49.

O′Donnell AE, Barker AF, Ilowite JS, Fick RB. Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. rhDNase Study Group. Chest 1998;113:1329-34.

Haworth CS, Bilton D, Elborn JS. Long-term macrolide maintenance therapy in non-CF bronchiectasis: Evidence and questions. Respir Med 2014;108:1397-408.

Haworth CS, Foweraker JE, Wilkinson P, Kenyon RF, Bilton D. Inhaled colistin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 2014;189:975-82.

Hnin K, Nguyen C, Carson KV, Evans DJ, Greenstone M, Smith BJ. Prolonged antibiotics for non-cystic fibrosis bronchiectasis in children and adults. Cochrane Database Syst Rev 2015;8:CD001392.

Brodt AM, Stovold E, Zhang L. Inhaled antibiotics for stable non-cystic fibrosis bronchiectasis: A systematic review. Eur Respir J 2014;44:382-93.

Serisier DJ, Bilton D, De Soyza A, Thompson PJ, Kolbe J, Greville HW, et al. Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): A randomised, double-blind, placebo-controlled trial. Thorax 2013;68:812-7.

Welsh EJ, Evans DJ, Fowler SJ, Spencer S. Interventions for bronchiectasis: An overview of Cochrane systematic reviews. Cochrane Database Syst Rev 2015;7:CD010337.

Zarogoulidis P, Papanas N, Kioumis I, Chatzaki E, Maltezos E, Zarogoulidis K. Macrolides: From in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. Eur J Clin Pharmacol 2012;68:479-503.

MacLeod DL, Barker LM, Sutherland JL, Moss SC, Gurgel JL, Kenney TF, et al. Antibacterial activities of a fosfomycin/tobramycin combination: A novel inhaled antibiotic for bronchiectasis. J Antimicrob Chemother 2009;64:829-36.

Prina E, Ranzani OT, Polverino E, Cillóniz C, Ferrer M, Fernandez L, et al. Risk factors associated with potentially antibiotic-resistant pathogens in community-acquired pneumonia. Ann Am Thorac Soc 2015;12:153-60.

Shorr AF, Myers DE, Huang DB, Nathanson BH, Emons MF, Kollef MH. A risk score for identifying methicillin-resistant Staphylococcus aureus in patients presenting to the hospital with pneumonia. BMC Infect Dis 2013;13:268.

Ma HM, Ip M, Woo J, Hui DS, Lui GC, Lee NL, et al. Risk factors for drug-resistant bacterial pneumonia in older patients hospitalized with pneumonia in a Chinese population. QJM 2013;106:823-9.

Shindo Y, Ito R, Kobayashi D, Ando M, Ichikawa M, Shiraki A, et al. Risk factors for drug-resistant pathogens in community-acquired and healthcare-associated pneumonia. Am J Respir Crit Care Med 2013;188:985-95.

Downloads

Published

2017-01-17

How to Cite

1.
Sahuquillo-Arce JM, Méndez R, Hernández-Cabezas A, Menéndez R. Non-cystic fibrosis bronchiectasis: The long road to multidrug resistant bacteria: Multidrug resistance and bronchiectasis. Community Acquir Infect. 2017;3. Accessed May 3, 2025. https://www.hksmp.com/journals/cai/article/view/247

Issue

Section

Review Articles

Downloads

Download data is not yet available.