Pathogen analysis of bacterial pneumonia secondary to influenza

Bacterial pneumonia secondary to influenza

Authors

  • Fei Wang Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
  • Bei He Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China

Keywords:

Bacterial pneumonia, influenza, pathogen

Abstract

In human history, there have been several times of influenza raging, which have caused tens of millions of deaths and brought serious social and economic burdens. Although with the development of science, the emergence of vaccines has significantly reduced the incidence and mortality of influenza, due to the high variability of viruses, there is still a lack of effective treatment. More and more studies have found that bacterial pneumonia secondary to influenza was an important cause of the progression to critical illness or even death. Hence, diagnosis and treatment timely of secondary bacterial pneumonia are valuable. Therefore, we discuss the pathogens of bacterial pneumonia secondary to influenza, associated morbidity, mortality, and risk factors. Hopefully, it can provide some valuable references for clinical practice. Since some clinical studies have not separated pneumonia from lower respiratory tract infections, we will discuss these two situations together.

References

Metersky ML, Masterton RG, Lode H, File TM Jr., Babinchak T. Epidemiology, microbiology, and treatment considerations for bacterial pneumonia complicating influenza. Int J Infect Dis 2012;16:e321-31.

Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: Implications for pandemic influenza preparedness. J Infect Dis 2008;198:962-70.

Brundage JF, Shanks GD. Deaths from bacterial pneumonia during 1918-19 influenza pandemic. Emerg Infect Dis 2008;14:1193-9.

Hers JF, Masurel N, Mulder J. Bacteriology and histopathology of the respiratory tract and lungs in fatal Asian influenza. Lancet 1958;2:1141-3.

Louria DB, Blumenfeld HL, Ellis JT, Kilbourne ED, Rogers DE. Studies on influenza in the pandemic of 1957–1958. II. Pulmonary complications of influenza. J Clin Invest 1959;38:213-65.

Oseasohn R, Adelson L, Kaji M. Clinicopathologic study of thirty-three fatal cases of Asian influenza. N Engl J Med 1959;260:509-18.

Centers for Disease Control and Prevention (CDC). Bacterial coinfections in lung tissue specimens from fatal cases of 2009 pandemic influenza A (H1N1) – United States, May – August 2009. MMWR Morb Mortal Wkly Rep 2009;58:1071-4.

Louie JK, Acosta M, Winter K, Jean C, Gavali S, Schechter R, et al. Factors associated with death or hospitalization due to pandemic 2009 influenza A (H1N1) infection in California. JAMA 2009;302:1896-902.

Centers for Disease Control and Prevention (CDC). Intensive-care patients with severe novel influenza A (H1N1) virus infection – Michigan, June 2009. MMWR Morb Mortal Wkly Rep 2009;58:749-52.

Webb SA, Pettilä V, Seppelt I, Bellomo R, Bailey M, Cooper DJ, et al.; ANZIC Influenza Investigators. Critical care services and 2009 H1N1 influenza in Australia and New Zealand. N Engl J Med 2009;361:1925-34.0

Wang XJ, Jiang RM, Xu YL, Zhang W, Huangfu JK, Wang YB, et al. The analysis of the clinical features between survivors and non-survivors with the severe form of new influenza A (H1N1) viral infection. Zhonghua Jie He He Hu Xi Za Zhi 2010;33:406-10.1

Glezen WP. Serious morbidity and mortality associated with influenza epidemics. Epidemiol Rev 1982;4:25-44.2

Serfling RE, Sherman IL, Houseworth WJ. Excess pneumonia-influenza mortality by age and sex in three major influenza A2 epidemics, United States, 1957-58, 1960 and 1963. Am J Epidemiol 1967;86:433-41.3

Neuzil KM, Reed GW, Mitchel EF, Simonsen L, Griffin MR. Impact of influenza on acute cardiopulmonary hospitalizations in pregnant women. Am J Epidemiol 1998;148:1094-102.4

Scadding JG. Lung changes in influenza. QJM 1937;6:425-65.5

Brundage JF. Interactions between influenza and bacterial respiratory pathogens: Implications for pandemic preparedness. Lancet Infect Dis 2006;6:303-12.6

Petersdorf RG, Fusco JJ, Harter DH, Albrink WS. Pulmonary infections complicating Asian influenza. AMA Arch Intern Med 1959;103:262-72.7

Lindsay MI Jr., Herrmann EC Jr., Morrow GW Jr., Brown AL Jr. Hong Kong influenza: Clinical, microbiologic, and pathologic features in 127 cases. JAMA 1970;214:1825-32.8

Gill JR, Sheng ZM, Ely SF, Guinee DG, Beasley MB, Suh J, et al. Pulmonary pathologic findings of fatal 2009 pandemic influenza A/H1N1 viral infections. Arch Pathol Lab Med 2010;134:235-43.9

Cao B, Li XW, Mao Y, Wang J, Lu HZ, Chen YS, et al. Clinical features of the initial cases of 2009 pandemic influenza A (H1N1) virus infection in China. N Engl J Med 2009;361:2507-17.0

Kumar A, Zarychanski R, Pinto R, Cook DJ, Marshall J, Lacroix J, et al. Critically ill patients with 2009 influenza A (H1N1) infection in Canada. JAMA 2009;302:1872-9.1

Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, et al. Comparison of the respiratory microbiome in healthy non-smokers and smokers. Am J Respir Crit Care Med 2013;187:1067-75.2

Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 2011;184:957-63.3

Peltola VT, McCullers JA. Respiratory viruses predisposing to bacterial infections: Role of neuraminidase. Pediatr Infect Dis J 2004;23:S87-97.4

Jason EP, Jane CD. Postviral complications: Bacterial pneumonia. Clin Chest Med 2017;38:127-38.5

Didierlaurent A, Goulding J, Patel S, Snelgrove R, Low L, Bebien M, et al. Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. J Exp Med 2008;205:323-9.6

Hussell T, Cavanagh MM. The innate immune rheostat: Influence on lung inflammatory disease and secondary bacterial pneumonia. Biochem Soc Trans 2009;37:811-3.7

Jartti T, Söderlund-Venermo M, Hedman K, Ruuskanen O, Mäkelä MJ. New molecular virus detection methods and their clinical value in lower respiratory tract infections in children. Paediatr Respir Rev 2013;14:38-45.8

Rodríguez AH, Avilés-Jurado FX, Díaz E, Schuetz P, Trefler SI, Solé-Violán J, et al. Procalcitonin (PCT) levels for ruling-out bacterial coinfection in ICU patients with influenza: A CHAID decision-tree analysis. J Infect 2016;72:143-51.

Downloads

Published

2020-06-16

How to Cite

1.
Wang F, He B. Pathogen analysis of bacterial pneumonia secondary to influenza: Bacterial pneumonia secondary to influenza. Community Acquir Infect. 2020;6(2). Accessed June 29, 2025. https://www.hksmp.com/journals/cai/article/view/178

Issue

Section

Review Articles

Downloads

Download data is not yet available.