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ABSTRACT 

Objective: To develop and validate one optimal MR radiomics model for lymph node 

(LN) re-evaluation of locally advanced rectal cancer (LARC) after neoadjuvant 

chemoradiotherapy (NCRT). 

Methods: Four hundred and seven patients with clinicopathologically confirmed 

LARC in Beijing Cancer Hospital were included in this study from July 2010 to June 

2015. All patients received NCRT before surgery, and underwent T2WI and DWI before 

and after NCRT. These patients were chronologically divided in the primary cohort (300 

patients) and independent validation cohort (107 patients). The predicting model was 

trained and validated using postoperative pathological findings as truth values. By using 

radiomics method, we extracted the features of the tumor and the largest LN before and 

after neoadjuvant therapy, combined different features of the tumor and /or the largest 

LN before and/or after neoadjuvant therapy, and constructed 4 different prediction 

models, compared the performance of four predicting models. The optimal conducted 

to determine the clinical usefulness of the radiomics nomograms by quantifying the net 

benefits at different threshold probabilities in the validation dataset.  

Results: In the primary cohort, the radiomics signatures from 4 models provided an 

AUC of 0.637, 0.709, 0.753, 0.835, respectively in LN re-evaluation after 

chemoradiotherapy. The diagnostic efficacy of model 4 was much better than that of 1, 

2 and 3 model. In the validation cohort, the radiomics signatures provided an AUC of 

0.795 for LN re-evaluation after chemoradiotherapy. The sensitivity, specificity, 

positive predictive value, negative predictive value were 0.813, 0.693, 0.531, 0.897, 

respectively (95% CI: 0.694 to 0.896, 0.647 to 0.911, 0.582 to 0.786, 0.361 to 0.621, 

0.792 to 0.952). While the probability of predicting N+ ranges from 17% to 80%, using 

the proposed radiomics model to predict N+ shows a greater advantage than either the 

scheme in which all patients were assumed to N+ or the scheme in which all patients 

are N–. Decision curve analysis demonstrated that the radiomics nomograms were 

clinically useful. 

Conclusion: With a systematic analysis and comparison of both pre-and post-NCRT 

MRI data, we constructed an optimal individualized LN re-evaluation model based on 

MR radiomics, combing primary tumor and the largest LN features, compared with 

other models (only with pre/post tumor or pre/post largest LN features). 
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therapy



INTRODUCTION 

Neoadjuvant chemoradiotherapy (NCRT) combined with total mesorectal excision 

(TME) is the current standard procedure for locally advanced rectal cancer (LARC).[1] 

After the completion of NCRT and before surgery, the primary tumor and lymph nodes 

should be re-evaluated to determine the therapeutic effect for further follow-up 

treatment plan.[2,3] At present, there is no characteristic radiologic sign or index 

accurately reflecting lymph node metastasis, so the efficiency of lymph node re-

evaluation by imaging examination is not satisfactory.[4,5] Magnetic resonance imaging 

(MRI) has been widely regarded as an optimal diagnostic tool for clinical evaluation of 

rectal cancer, which can display the primary tumor, reveal the status of mesorectal 

fascia (MRF) and extramural venous invasion (EMVI).[6–10] and also demonstrate the 

distribution of lymph nodes (in and out of mesorectal fascia). Radiologists 

comprehensively determine whether lymph nodes are malignant by their size, shape, 

rim and signal intensity.[11,12] However, this diagnostic system highly depends on 

radiologists’ experience which results in poor interobserver repeatability. DWI and 

ADC values were introduced to evaluate lymph node status, yet the diagnostic 

efficiency was not prominently improved.[13,14] Besides, lymph node (LN) re-evaluation 

is further complicated with chemoradiotherapy induced fibrosis, desmoplastic reaction, 

and colloid response.[15] Huang et al.[16] adopted the radiomics method based on CT 

imaging to evaluate the lymph node status of colorectal cancer, which showed the 

promising result. In the present study, we established different models with clinical 

information and radiomics features extracted from the primary tumor and/or the largest 

lymph node before and/or after NCRT in morphological (T2WI) and functional imaging 

(DWI) to predict lymph node metastasis. Among them, one optimal model was selected 

and validated by a new dataset. The aim was to assess the value of MRI-based radiomics 

model in LN re-evaluation of LARC after NCRT. 

 

MATERIALS AND METHODS 

Patient 

Patients with clinicopathologically confirmed LARC in Beijing Cancer Hospital and 

who met the inclusion criteria between July 2010 to June 2015 were retrospectively 

enrolled in this study. The inclusion criteria were: (1) biopsy-proven primary rectal 

cancer; (2) LARC (T3-4 and/or N+) determined by pretreatment MRI; (3) no history of 

treatment of the rectal tumor and received complete NCRT in our institute;(4) 



underwent TME after NCRT and had complete pathological information; (5) pre- and 

post-CRT MRI, including high resolution T2WI and DWI. The exclusion criteria were: 

(1) MRI quality was insufficient for measurements (e.g. movement artifacts); (2) 

mucinous adenocarcinoma confirmed by pathological results. 

In total, 407 patients were enrolled, including 257 males and 150 females, with a mean 

(SD) age of 56 (11) years ranging from 21 to 87 years. From July 2010 to July 2014, 

patients were grouped into the primary cohort for feature selection, model development, 

and cross validation. Of these 300 patients, there were 182 males and 118 females, with 

a mean (SD) age of 55 (11) years ranging from 21 to 87 years. From August 2014 to 

June 2015, 107 patients were grouped into the independent validation cohort to test the 

generalization ability of the predicting model, including 75 males and 32 females, with 

a mean (SD) age of 59 (10) years ranging from 23 to 81 years.  

 

MRI protocol 

All patients received MRI examinations at two time points: within one week before the 

initiation of NCRT and within one week before surgery, which were defined as pre-

NCRT MRI and post-NCRT MRI, respectively. MRI was performed with a 1.5-T or a 

3.0-T scanner (GE Healthcare, USA) using an 8-channel phased array body coil in the 

supine position. To inhibit colonic motility, 20 mg of scopolamine butylbromide was 

intramuscular injected 30 min before scanning. Axial T2WI was also obtained using fat 

recovery fast spin echo and the acquisition parameters were as follows: repetition time 

(ms) / echo time (ms), 5694/110; field of view (FOV), 18.0 mm × 18.0 mm; matrix size, 

288 × 256; echo train length, 24; section thickness, 3.0 mm; and intersection gap, 0.3 

mm. DWI was obtained using a single-shot echo-planar imaging sequence, with a 

repetition time (ms) / echo time (ms) of 2800/70, 34.0 mm × 34.0 mm FOV, 256 × 256 

matrix, 4.0-mm section thickness, 1.0-mm intersection gap, and 2b values (0, 1000 

s/mm2). 

 

NCRT treatment 

All patients received concomitant intensity-modulated radiation therapy (IMRT, 22 

fractions of 1.8–2.0 Gy, total dose of 50.0–55.0 Gy)[17, 18] and simultaneous 

chemotherapy with capecitabine (825 mg/m2/bid, oral administration). Eight to eleven 

weeks after the completion of NCRT, the patients underwent TME surgery. 

 



Pathologic assessment 

All specimens were assessed in accordance with the TNM staging system (American 

Joint Committee on Cancer, Cancer Staging Manual. 7th edit.) The predicting model 

was trained and validated using postoperative pathological findings as truth values. If 

there was any metastatic LN, the result was recorded as 1; otherwise, as 0. 

 

Radiological assessment 

MRI images were assessed by 2 senior radiologists who were blinded to any clinical or 

pathologic information. 

 

Subjective evaluation of LN status 

According to Beets-Tan and Beets,[4] LN status is determined comprehensively by their 

short axis (SA) and morphological features. Suspicious features for LN metastasis 

include irregular rim, heterogeneous signal intensity, and round shape. Specifically, 

LNs whose SA＜5 mm with all three suspicious features, LNs whose SA between 5 

and 9 mm with two of the above three features, and LNs whose SA ≥ 9 mm with or 

without suspicious features are considered as metastatic LNs. 

 

Conventional characteristics 

The evaluated conventional characteristics of rectal cancer included tumor location, 

distance from the tumor inferior margin to the anorectal junction and to the anal verge, 

maximum tumor length and invasion depth (measured on oblique axial T2WI), 

extramural depth of tumor invasion (measured on oblique axial T2WI), distance from 

the deepest position of tumor invasion to circumferential resection margin (CRM, 

measured on oblique axial T2WI; if the distance was further than 1mm, CRM status 

was considered as negative, otherwise, positive), total number of visible LNs on MRI 

(combined axial T2WI and DWI); short axis of the largest LN (measured on axial 

T2WI). 

 

Tumor masking 

Regions of interest (ROIs) were manually delineated on pre- and post-NCRT T2WI and 

DWI (b = 1 000 s/mm2), covering the entire tumor area in each consecutive slice. When 

there was no tumoral signal on the post-NCRT T2WI or DWI, free-hand ROIs were 



drawn contouring the rectal wall at the former location of primary tumor according to 

the pre-NCRT examination. 

 

LN masking 

ROIs were delineated to cover the largest lymph node in T2WI in each consecutive 

slice. 

 

Automate feature extraction 

Radiomics features were extracted automatically from the tumor and the largest LN on 

T2WI before and after NCRT respectively, using an iN–house software programmed 

with MATLAB (R2011b，MathWorks). A total of 41 radiomics features were extracted, 

including 9 first-order gray level histogram features (maximum value, minimum value, 

median value, sum, mean value, variance, standard deviation, skewness and kurtosis), 

24 gray level co-occurrence matrix (GLCM) texture features (energy, entropy, 

correlation, contrast, homogeneity, variance, sum mean, inertia, cluster shade (CS), 

cluster tendency (CT), max probability (MP), inverse variance (IV)), d =1 and 2) and 8 

geometric features (volume, major axis length a, minor axis length b, eccentricity, 

elongation, orientation, volume of bounding box, perimeter), were acquired from each 

tumor or LN. The CT and IV were calculated. The long axis direction is defined as the 

angle between the long axis of the ellipse with the same moment of inertia as the largest 

section of the ROI and the horizontal direction. Extensibility is defined as the aspect 

ratio of the smallest rectangle where the largest section of the ROI is located. Functional 

features were extracted from the tumor before and after NCRT, including maximum, 

minimum, and average ADC values.  

 

Development and validation of the predicting model 

The least absolute shrinkage and selection operator (LASSO) was conducted to select 

the optimized subset of features and to calculate the radiomics score (Rad-score) of 

each patient.[19] In LASSO algorithm, the coefficients of some features are reduced to 

zero by adjusting the hyperparameter λ to select features. The 10-fold cross-validation 

(the sample was randomly divided into 10 portions, 9 for training and 1 for validation) 

was used to tune the hyperparameter λ by maximizing the area under curve (AUC) of 

receiver operating characteristic (ROC) curve. A radiomics score (Rad-score) was 



calculated for each patient via a linear combination of selected features that were 

weighted by their respective coefficients. 

To investigate the necessity of combining tumor and LN features from pre- and post-

NCRT MRI, we established the following four models by their source: (1) tumor 

features + conventional measurements from post-NCRT MRI; (2) the largest LN 

features + conventional measurements from post-NCRT MRI; (3) tumor features+ the 

largest LN features + conventional measurements from post-NCRT MRI; (4) tumor 

features+ the largest LN features + conventional measurements from pre- and post-

NCRT MRI. First, Bootstraps with 1000 resamples were used in the above 4 models 

and constructed 4 predicting models. The AUC, sensitivity (SEN), specificity (SPE), 

positive predictive value (PPV), and negative predictive value (NPV) were calculated 

to assess the performance of the predicting model in the primary cohorts. Then the 

optimal one was validated in an independent validation dataset. 

 

Statistical analysis 

All statistical analyses were performed using Statistical Package for the Social Sciences 

(SPSS) 22.0 (IBM Corp., Armonk, NY, USA). Two radiologists delineated ROIs and 

measured conventional characteristics of 80 consecutive patients (from June 2010 to 

December 2011) and calculated their Rad-score by using radiomics method 

independently. The intraclass correlation coefficients (ICC) were calculated to evaluate 

interobserver agreement (0.81–1.00 excellent, 0.61–0.80 good, 0.41–0.60 moderate, 

0.21–0.40 fair, 0–0.20 poor). The independent-sample t test was used to compare the 

difference of continuous variable (age) between primary and validation cohorts. The 

Chi-square test was used to compare the dichotomous variables. And the independent 

sample t test was also applied to compare the difference between N+ and N– groups. P 

< 0 .05 was considered as statistically significant. 

 

Clinical use 

Decision curve analysis was conducted to determine the clinical usefulness of the 

radiomics model by quantifying the net benefits at different threshold probabilities.[20] 

 

RESULTS 

Clinical characteristics 

There was a significant difference in age between the primary and independent 



validation cohorts. Other clinical and pathological characteristics, including gender, 

tumor location, and pathological lymph node status were not significantly different 

between the two groups (Table 1). 

 

Table 1. Clinical and pathological characteristics of the primary and independent 

validation cohorts 

Cohort n Gender 
Age (year,

x ± s) 
Primary Site  Pathological N–stage 

  male female  High, middle low  N＋ N－ 

Primary 300 182 118 55±11 83 217  80 220 

validation 107 75 32 59±10 30 77  32 75 

Test 

value 
 3.012a 3.108b 0.005a  0.415a 

P-value  0.083 0.002 0.169  0.730 

aVariables were tested using the χ2 test. bVariables were tested using the t-test. N+: There 

was metastatic LN in the postoperative pathological finding. N–: There was no 

metastatic LN in the postoperative pathological finding. 

 

Radiomics model construction and selection 

The LASSO method tuned the hyperparameter λ corresponding to the maximum 

average AUC for feature selection (Figure 1). Fifteen features were selected with the 

hyperparameter λ = 0.024 from model 4, including 6 significantly different features 

between pathological LN-positive and negative groups (Table 2). 

There was significant difference among the diagnostic efficacy in LN re-evaluation 

after NCRT of 4 models (P < 0.01, Table 3), in which model 4 was the optimal one with 

an AUC of 0.835 (Figure 2). Compared with the pathological truth value, the AUC of 

subjective LN re-evaluation after NCRT by 2 radiologists was 0.627 (95% confidence 

interval [CI]: 0.560–0.695) and 0.617 (95% CI: 0.549–0.685), respectively, which was 

significantly smaller than that of model 4 (Table 4). 

 



 

Figure 1. Radiomics feature selection using the least absolute shrinkage and selection 

operator (LASSO) of model 4 (tumor features+ the largest LN features+ conventional 

measurements from pre- and post-NCRT MRI). The vertical coordinate was the average 

area under the ROC (AUC) of the 10-fold cross-validation, the degree of freedom 

represented the selected feature number, the dotted line position was the log (λ) 

corresponding to the maximum AUC value, and the optimal λ was the λ corresponding 

to the maximum average AUC of the cross-validation. As the hyperparameter λ 

increased, the number of features selected by the model gradually decreased to 0. For 

each hyperparameter λ, the mean value of AUC obtained by 10-fold cross-validation 

was regarded as the variance. The LASSO method tuned the hyperparameter λ 

corresponding to the maximum average AUC for feature selection and removed 

unimportant features 

 

Table 2. The weight coefficients of the selected features in model 4 in the primary 

cohort and the comparison results of each characteristic value between N+ and N– 

groups. 

Feature Weight N– ( x ± s) N+ ( x ± s) Test Value P-value 

Post_LN_IntensityMin –0.543 0.168±0.149 0.123±0.140 2.358 < 0.05 

Post_LN_InverseVariance 1.899 0.289±0.145 0.399±0.194 4.625 < 0.01 

Post_LN_Elongation 0.653 0.398±0.171 0.432±0.147 1.578 0.116 

Post_LN_Orientation –0.350 0.515±0.311 0.438±0.276 1.963 0.051 

Post_Tumor_Elongation 5.794 0.091±0.023 0.104±0.048 2.272 < 0.05 



Post_Tumor_ADCmin -0.193 0.875±0.130 0.847±0.145 1.623 0.106 

Post_Tumor_PrimarySite -0.319 0.7621±0.258 0.700±0.274 1.816 0.070 

Pre_LN_MinAL 5.470 0.214±0.081 0.321±0.173 5.310 <0.01 

Pre_Tumor_Variance 1.101 0.030±0.064 0.055±0.154 1.413 0.161 

Pre_Tumor_Tendency -2.867 0.131±0.101 0.103±0.042 3.409 <0.01 

Pre_Tumor_ADCmin 0.201 0.886±0.140 0.903±0.103 0.996 0.320 

Pre_Tumor_ADCmean 0.891 0.374±0.138 0.390±0.113 0.883 0.378 

Pre_Tumor_InvadedLength -1.406 0.303±0.152 0.277±0.115 1.587 0.114 

Pre_Tumor_INvadedDepth -1.921 0.206±0.132 0.173±0.073 2.744 <0.01 

Pre_Tumor_IDTMP*  0.069 0.308±0.118 0.328±0.161 1.001 0.319 

N+: There was metastatic LN in the postoperative pathological finding. N–: There was 

no metastatic LN in the postoperative pathological finding. *IDTMP stands for invaded 

distance through the muscularis propria. 

 

Table 3. The diagnostic efficiency of four models for predicting pathologic LN 

metastasis after NCRT in the primary cohort. 

Model 1: tumor features + conventional measurements from post-NCRT MRI. Model 

2: the largest LN features + conventional measurements from post-NCRT MRI. Model 

3: tumor features+ the largest LN features + conventional measurements from post-

NCRT MRI. Model 4: tumor features + the largest LN features + conventional 

measurements from pre- and post-NCRT MRI. Numbers in parentheses were 95% 

confidence intervals. 

Model AUC SEN SPE PPV NPV 

1 0.637（0.585–0.655） 0.375（0.257–0.862） 0.846（0.359–0.953） 0.469（0.270–0.514） 0.788（0.760–0.859） 

2 0.709（0.671–0.726） 0.625（0.444–0.802） 0.718（0.537–0.893） 0.446（0.353–0.555） 0.840（0.805–0.877） 

3 0.753（0.700–0.765） 0.688（0.460–0.770） 0.750（0.637–0.939） 0.500（0.397–0.658） 0.868（0.818–0.883） 

4 0.835（0.773–0.840） 0.750（0.552–0.850） 0.746（0.654–0.938） 0.517（0.437–0.701） 0.891（0.843–0.920） 



 

Figure 2. Receiver operating characteristic (ROC) curves of Rad-score calculated 

from model 4 for predicting LN metastasis compared with the pathological truth 

value. The area under the curve (AUC) value was 0.835. 

 

Table 4. The diagnostic efficiency of two radiologists for subjectively predicting 

pathologic LN metastasis after NCRT in the primary cohort. 

Numbers in parentheses were 95% confidence intervals. AUC: area under curve. SEN: 

sensitivity. SPE: specificity. PPV: positive predictive value. NPV: negative predictive 

value. 

 

Interobserver agreement 

Interobserver agreement was good to excellent for all the conventional characteristics 

between the 2 radiologists (ICC: 0.779–0.914, P < 0.05). 

 

Independent validation of the radiomics model 

As shown in Figure 3 and 4, the Rad-score was correlated with pathological LN status 

after NCRT. Specifically, if the Rad-score was positive, then the patient was considered 

as N+; if the Rad-score was negative, then the patient was considered as N–. In the 

independent validation cohort, the radiomics signatures provided an AUC of 0.795 for 

Rater AUC SEN SPE PPV NPV 

1 0.627（0.560–0.695） 0.862（0.770–0.922） 0.393（0.330–0.459） 0.342（0.281–0.433） 0.887（0.808–0.936） 

2 0.617（0.549–0.685） 0.838（0.742–0.903） 0.382（0.322–0.450） 0.330（0.280–0.409） 0.867（0.804–0.934） 



LN re-evaluation after NCRT. The sensitivity, specificity, positive predictive value, 

negative predictive value were 0.813, 0.693, 0.531, and 0.897, respectively (95% CI: 

0.694–0.896, 0.647–0.911, 0.582–0.786, 0.361–0.621, 0.792–0.952). 

 

 

 

Figure 3, 4. Rad-score of model 4 in the primary cohort (Figure 3) and independent 

validation cohort (Figure 4) respectively. Red bars represented that there was metastatic 

LN in the postoperative pathological finding (N+), while blue bars represented no 

metastatic LN (N–). The higher the score, the more likely there existed metastatic LNs. 

Specifically, if the Rad-score was positive, then the patient was considered as N+; if the 

Rad-score was negative, then the patient was considered as N–. 

 



Decision curve analysis 

While the probability of predicting N+ ranges from 17% to 80%, using the proposed 

radiomics model to predict N+ showed a greater advantage than either the scheme in 

which all patients were assumed to N+ or the scheme in which all patients were N–.  

Decision curve analysis demonstrated that the radiomics nomograms were clinically 

useful (Figure 5). 

 

Figure 5. Decision curve analysis of model 4 in the independent validation cohort, 

quantifying the net benefits at different threshold probabilities. While the probability of 

predicting N+ ranges from 17% to 80%, using the proposed radiomics model to predict 

N+ showed a greater advantage than either the scheme in which all patients were 

assumed to N+ or the scheme in which all patients were N–. 

 

DISCUSSION 

The value of MRI-based radiomics predicting model for LN re-evaluation after 

NCRT in LARC 

To re-evaluate LN status after NCRT, all patients enrolled in this study were diagnosed 

with locally advanced rectal cancer. Four different predicting models were constructed 

with factors closely related to LN status. Our study showed that LN status could not be 

evaluated accurately by radiomics features extracted from the tumor alone (model 1). 



The LN status after NCRT is too complicated that simple replication of the LN 

evaluation model proposed by Huang et al.[16] is not appropriate. Besides, LN radiomics 

features alone (model 2) were not efficient for LN re-evaluation either. There were few 

factors included in the model even though LN radiomics features extracted from LN on 

post-NCRT MRI were correlated with pathological results more closely. Model 3 

combined tumor radiomics features with LN radiomics features from post-NCRT MRI, 

achieving better diagnostic performance than model 1 and 2 did, with an AUC of 0.753. 

Given LN status after NCRT is affected by multiple factors in addition to the lymph 

node and tumor biological behavior,[21-23] we selected tumor and LN radiomics features 

from pre-NCRT MRI to reflect tumor burden in model 4, which remarkably 

outperformed the other 3 models.  

By radiomics method, model 4 combined with all information available in routine 

clinical practice (including morphological / functional imaging information and tumor 

markers) to build a brand-new predicting model for LN re-evaluation of LARC after 

NCRT, whose diagnostic efficiency was also significantly superior to the conventional 

subjective LN evaluation (AUC: 0.627 and 0.617). The size, shape, rim and signal 

intensity can be recognized but cannot be quantitatively analyzed by naked eyes. With 

MRI-based radiomics method, not only visible information can be quantified avoiding 

the subjective bias of different observers, but also a large amount of digital information 

that cannot be recognized and distinguished by human eyes can be mined and integrated, 

thus improving the diagnostic efficiency of LN re-evaluation after NCRT. 

Decision curve analysis demonstrated that while the probability of predicting N+ ranges 

from 17% to 80%, model 4 was clinically useful, superior to conventional LN 

evaluation. The main problem of this model is the low positive predictive value. 

However, false N positive would not lead to inadequate or delayed treatment for 

patients who routinely receive radical surgery after NCRT. While high negative 

predictive value of LN re-evaluation may result in treatment alteration, that is for true 

LN negative patients with T0 or T1-stage tumor, local excision could be implemented 

and anal sphincter function in patients with tumor located in the lower rectum could be 

preserved. Therefore, from the clinical perspective, accurate identification of patients 

with N0 is of greater clinical significance.  

 

Limitations 

Due to the retrospective study design, the lymph node couldn’t be matched lesion-by-



lesion from imaging to pathology, so an accurate N stage was not assessed in the present 

study. We selected the largest LN within the scanning coverage as one of the factors 

because on the patient level the larger the lymph node, the higher the probability of 

metastasis.[11, 12] It provided a new idea and method for retrospective study for LN re-

evaluation after NCRT. We did not include the DWI information of LNs, and further 

analysis is needed to determine whether DWI is helpful for LN re-evaluation after 

NCRT. Besides, it was a retrospective study with single-center samples, our results 

should be prospectively evaluated and validated in prospective multicenter clinical 

trials. 

In conclusion, with radiomics method, we explored the details of MRI images, 

including but not limited to lymph node size, shape, rim, internal signal intensity and 

other conventional characteristics for lymph node status evaluation, combined with 

morphological and functional information of the primary tumor, together with complete 

clinical data available in routine clinical practice of rectal cancer, and constructed an 

optimal individualized LN re-evaluation model after NCRT. Independent external 

validation results showed that the diagnosis efficiency of our model was better than the 

previous criteria, and clear clinical benefit can be achieved with it. Therefore, the 

application of this radiomics model can accurately predict the LN status after NCRT, 

and further realize personalized precision medicine.[24] 
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