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INTRODUCTION

While most intrauterine tissues are thoroughly studied 
for their role in pregnancy maintenance and their 
contribution to labor initiation, the fetal membranes (i.e., 
amniochorionic membranes) are primarily overlooked.[1,2] 
The fetal membrane lines the intrauterine cavity (Figure 1A) 
and provides critical mechanical, immune, and endocrine 
support to protect the fetus during gestation[1,3-12] and 
has been shown to provide vital labor initiating signaling 
at term and preterm.[2,5,13-20] The function of  the fetal 
membrane is derived from its unique makeup of  multiple 
collagen layers,[21-23] along with fetal-derived cells that line 
with maternal decidua, forming the feto-maternal interface. 
A summary of  the structure and function of  the fetal 
membranes and the challenges researchers face studying 
this tissue are described below.

FETAL MEMBRANE ANATOMY

The fetal membrane and the maternal decidua form one 
of  the feto-maternal interfaces during gestation (Figure 
1B). The fetal membrane comprises two epithelial 
membranes, the amnion, and chorion, that are connected 
by collagen-rich multiple layers of  extracellular matrix.[2,24] 
The amnion membrane, which maintains most of  the 
fetal membranes’ tensile strength,[10,11,25-29] consists of  an 
amnion epithelial layer connected to the fibrous-spongy 
layer of  the extracellular matrix via a Type IV collagen-rich 
basement membrane.[22,23] These collagen layers contain 
various stromal cell types, including amnion mesenchymal 

cells, fibroblasts, immune cells, and chorion mesenchymal 
cells.[30-34] Stromal cells within the fetal membrane secrete 
Type Ⅰ and Ⅲ collagens to create a variety of  extracellular 
matrix layers, forming a fibrous skeleton responsible 
for maintaining membrane integrity.[22,35] The chorion 
membrane plays a crucial role in immune tolerance.[36-38] 
It contains the reticular layer and connects to the chorion 
trophoblast cells through another Type IV collagen-rich 
basement membrane.[39,40] These fetal membrane layers 
are fused with the maternal decidua parietalis containing 
leukocytes to form the feto-maternal interface during 
pregnancy.[24,41-43] 

REGIONS OF THE FETAL MEMBRANE

The fetal membranes are divided into different regions 
based on their proximity to maternal or fetal organs. They 
are generally divided into a region lining the placental bed 
(i.e., the region lining the apical side of  the placenta), or 
reflective membranes that line the intrauterine cavity.[44,45] 
Though they have similar architecture, the membrane lining 
of  the placental bed contains a condensed extracellular 
matrix and chorion layer. It only includes a small portion 
of  the overall surface area of  the fetal membrane.[46] 
Furthermore, the reflective membranes can be classified 
as the peri-placental zone (i.e., two–three inches from the 
placenta), mid-zone (i.e., middle and largest region), and 
cervical zone (i.e., overlaying the cervix) depending on 
their proximity to the placenta or the cervix.[44,45] Within 
the cervical zone is a region of  the fetal membrane termed 
the zone of  altered morphology (ZAM) which contains 
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loose collagen structures that may contribute to the rupture 
of  the membranes at term.[21,47,48] A better understanding 
of  the region from which membranes are sampled and 
its histology is essential when studying fetal membrane 
structure and its cellularity and function.

FETAL MEMBRANE FUNCTION DURING 
GESTATION AND PARTURITION

The fetal membrane is not an inert tissue that lines the 
maternal decidua or the inner uterine cavity, instead, it 
is a complex multicellular organ that plays a distinct 
and vital role in maintaining pregnancy and the onset 
of  labor signaling.[49] Throughout gestation, the amnion 
component of  the fetal membrane plays a critical role 
in sustaining membrane integrity by undergoing cellular 
remodeling.[4,50-53] This process upholds the amnion tensile 
strength providing a watertight barrier and structure to 
the intrauterine cavity. The chorion component of  the 
fetal membrane plays a distinct role from the amnion, 
as it is responsible for creating immune homeostasis in 
various ways. Chorion trophoblast cells modulate the 
immune environment by producing anti-inflammatory 
hormones[9,36,54,55] and cytokines,[12] and by buffering 
maternal (decidual) immune cell invasion[47,56] and immune 
intolerance by abundant expression of  human leukocyte 
antigen G (HLA-G).[3] These endocrine and paracrine 
signalers help to maintain immune cell homeostasis at the 
choriodecidual interface.[12,57]

At term, close to 40 weeks gestation, both fetal and 
maternal tissue contribute to an increased inflammatory 

load and immune cell activation that promotes myometrial 
contractions and cervical ripening leading to delivery of  
the baby.[1,2,20,58] The fetal membrane has been recently shown 
to play a substantial role in initiating this labor cascade.[2,17,20] 
Traditionally, it is known that fetal membranes produce 
cyclooxygenase-2 and prostaglandins that contribute to 
membrane weakening and rupture at term.[59-64] Recent studies 
suggest that fetal membranes from both humans and mice 
undergo a reactive oxygen species induced (due to intrauterine 
oxidative stress at term), telomere-dependent, activation of  
p38 mitogen-activated protein kinase (p38MAPK).[24,31,65-68] 

p38MAPK is a stress signaler that can contribute to 
various cell fates.[66,69,70] Increased p38MAPK activation 
at term causes fetal membrane senescence, or a mechanism 
of  tissue aging, and secretion of  senescence-associated 
secretory phenotypes (SASP) comprised of  pro-inflammatory 
cytokines, chemokines, growth factors, cell-free fetal DNA, 
and matrix metalloproteinases.[24,29,34,54,71,72] SASP represents 
sterile inflammation in fetal tissues that propagates to the 
maternal side and transitions the quiescent myometrium 
and cervix into a contractile (active/labor) phenotype. This 
induction of  stress-activated p38MAPK also causes fetal 
membrane epithelial cells (i.e., amnion and chorion) to 
undergo cellular transitions (i.e., epithelial-to-mesenchymal 
transition or EMT).[5,50,52,53,73] EMT increases the number 
of  mesenchymal cells, promotes collagen degradation, 
and changes the inflammatory status at the feto-maternal 
interface.[50,73] These mesenchymal cells promote collagen 
degradation by increasing matrix metalloproteinases nine 
that can contribute to the development of  microfractures 
(i.e., biologic fissures) within the extracellular matrix of  

Figure 1. Intrauterine and fetal membrane anatomy. (A) Within the intrauterine cavity, there are a variety of maternal (i.e., myometrium and cervix) and fetal 
(i.e., placenta, umbilical cord, and an amniotic cavity containing amniotic fluid, and the fetal membranes) derived organs that surround the fetus and contribute 
to pregnancy maintenance. The fetal membranes (black) line the cavity and are derived from multiple fetal cellular and collagen layers to form the feto-maternal 
interface. (B) The amnion epithelial cells (blue) are connected to the basement membrane (dark green) and compact layer (green dashes) of the extracellular 
matrix (ECM) forming an amniotic fluid-tight barrier. Within the first layer of the ECM (i.e., the fibrous layer), amnion mesenchymal cells (light purple) 
migrate and interact with the collagen environment. Separating the fibrous and reticular layers of the ECM is the spongy layer that separates the amnion (blue) 
and chorion (yellow) portions of the fetal membranes. The reticular layer of the ECM contains chorion mesenchymal cells (dark purple) that is connected to 
the pseudo-basement membrane of the chorion. The multi-layer of chorion trophoblast cells (yellow) forms the second epithelial layer of the fetal membranes 
and is critical for immune homeostasis. The fetal chorion layer is directly connected to the maternal decidua layer (green) forming the feto-maternal interface 
of the membranes. Resident immune cells predominantly live in the decidua layer but can migrate into the chorion and amnion layers if stimulated.
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the membranes.[17,40,53] It is postulated that these pro-labor 
inflammatory signals described above could propagate in 
two different ways: diffusion through microfractures or 
exosomes (30–160 nm size extracellular vesicles) released 
from fetal membrane cells. Microfractures are higher in 
number and morphometrically (width and length) at 
term.[17,40,53] Experimentally, we have recapitulated that in 
vitro conditions mimicking labor also increases appearance 
of  microfractures with larger and deeper features.[17,40,53] 

This suggests their relevance in the propagation of  
parturition signals. Exosomes are capable of  carrying 
contents from the cell of  their origin. It is reported that 
exosome cargo from oxidatively stressed fetal membrane 
cells contains active forms of  p38MAPK and SASPs 
capable of  promoting labor signaling.[14,16,74-76] 

CHALLENGES STUDYING FETAL 
MEMBRANES

Researchers studying fetal membranes must overcome 
many obstacles to rationalize the importance of  studying 
their tissue of  interest to journal editors and funding 
agencies. The first hurdle they must overcome is the 
definition of  the fetal membrane and the second is to 
convince reviewers that the fetal membranes are separate 
from the placenta. Heterogeneity in the nomenclature 
of  the membranes (i.e., amniotic sac, amniochorionic 
membrane, fetal membrane, placental membrane, feto-
maternal interface) and which cell layers should be included 
in this terminology creates ambiguity.

The Fetal Membrane Society (FMS) is formed to 
educate reproductive biologists and perinatal biologists 
and scientists on the relevance and significance of  the 
membranes. FMS is also involved in creating awareness 
of  the importance of  fetal membrane research among the 
public. As a major contributor to pregnancy maintenance 
and a determining factor in the timing of  birth at 
term and preterm. As a contributor to fetal signals of  
parturition, regulating its pathological functions is critical 
to reducing the incidences of  preterm birth. This topic 
was one of  great interest at this year’s FMS meeting held 
during the 2022 Society of  Reproductive Investigation 
International meeting. The FMS concluded that a white 
paper should be published to define “fetal membranes” 
and standardize the nomenclature in the literature. The 
hope is that a set nomenclature will improve reproducibility 
and provide clarity when documenting the important 
role, the fetal membranes play during gestation and 
parturition. Additionally, the fetal membranes are classically 
misidentified as an extension of  the placenta. As it is well 
known now, the fetal membranes are not a mere extension 
of  the placenta but play very important mechanical, 
immune, endocrine, and communication roles between the 
mother and fetus.[1] These functions regulate membrane 
growth and maturation which contributes to pregnancy 
homeostasis. Misclassification of  the membranes and not 

identifying them as a distinct tissue from the placenta has 
slowed fetal membrane-specific research and funding. 
This and the lack of  an advocacy group or international 
organization that focuses on this topic have restricted 
scientific awareness of  this fascinating tissue. The FMS has 
been trying to address some of  these issues and developing 
strategies to generate awareness and fill knowledge gaps in 
fetal membrane biology and function. 

Unlike other intrauterine tissues such as the myometrium 
or placenta, that have established in vitro methodology 
such as commercially available cell lines, ex vivo systems 
(i.e., myograph and placenta perfusion),[77-80] organoids,[81,82] 
organ-on-chip devices,[83-88] and validated animal models, 
the fetal membranes lack a majority of  these resources. 
Currently, there are no commercially available and validated 
iPS or cell lines for the amnion, chorion, or the decidua 
of  the fetal membrane feto-maternal interface. Due to 
this, researchers are forced to use either contaminated 
(i.e., amnion wish cells – HeLa) or improper cell types 
(i.e., placenta choriocarcinoma – BeWo to mimic the 
chorion trophoblasts; decidualized endometrium to mimic 
the decidua parietalis) to conduct cellular studies. This 
limits research undertaken in the field and reduces new 
discoveries. Furthermore, unlike the other organs described 
above, very few organ-on-chip models of  the fetal 
membranes exist,[46,52,89-91] and fetal membrane organoids 
are yet to be developed. These are both critical platforms 
needed in this field to truly understand cell-cell cell-collagen 
interactions responsible for pregnancy maintenance and 
pathology onset.

SUMMARY 

The fetal membranes form a unique barrier that surrounds 
the neonate and promotes its survival during gestation. 
This membrane is comprised of  two components, the 
amnion and chorion layers, that function as distinctly 
unique epithelial compartments promoting homeostasis 
during development. At term initiated by physiological 
signals, or preterm induced by pathology, these layers 
promote signaling cascades that contribute to labor onset. 
Advanced in vivo and in vitro methodology to study the 
fetal membrane, along with the formation of  advocacy 
groups, are needed to truly understand and promote this 
unique tissue. 

CONCLUSIONS

If  studied adequately, the fetal membranes, as one of  the 
feto-maternal interfaces, could answer many questions 
regarding labor induction, inflammation, infection, 
and pathologies that lead to preterm birth. A better 
understanding of  all aspects of  fetal membrane origin, 
as well as cellular characteristics, needs to be taken into 
account to tease out the mechanism behind the labor 
cascade and how to target said pathways therapeutically. 
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A global understanding of  the role of  fetal membranes 
in parturition highlights the critical function of  the 
membranes during pregnancy and in the prevention of  
adverse pregnancy outcomes.
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