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ABSTRACT 

In recent years, AI has rapidly developed and set off a research boom in several fields 

of medicine, showing great potential and promising to bring revolutionary changes to 

the medical field. Currently, researches on AI in digestive endoscopy are in full swing, 

and many great results have been achieved. This paper provides a systematic 

description of the research related to AI in digestive endoscopy and discusses the 

challenges and prospects of AI in digestive endoscopy. 
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INTRODUCTION 

 

Artificial intelligence (AI) is a new science and technology that makes machines 

mimic certain thinking processes and behaviors of human beings. In recent years, AI 

has set off a research boom in many fields of medicine, showing great potential. 

Digestive endoscopy is a hot field of medical AI research, and relevant research is in 

full swing at home and abroad, with significant breakthroughs in several fields. The 

intelligent development of digestive endoscopy is expected to solve the problems of 

large demand for endoscopy, shortage of endoscopists, uneven quality of examination 

and high training cost. We searched PubMed, China National Knowledge 

Infrastructure (CNKI) and other databases for studies on AI in digestive endoscopy up 

to November 2021. Now we summarize the progress of AI in digestive endoscopy and 

discuss the shortcomings and challenges, with hope to provide ideas for the 

exploration of AI in digestive endoscopy. 

 

AI IN GASTROSCOPY 

Diagnosis of Esophageal Lesions 

Esophageal cancer is the sixth most common cause of cancer-related death globally, 

and esophageal squamous cell carcinoma (ESCC) accounts for more than 90% of 

esophageal cancers in China. Studies have found that the five-year survival rate of 

patients with advanced esophageal cancer is less than 20%, and the five-year survival 

rate of patients with early esophageal cancer is more than 80%.[1-2] Hence, early 

diagnosis and treatment is the key to improve the prognosis of patients with 

esophageal cancer. Yunshi Zhong et al. developed a novel system of computer-aided 

detection (CAD) to localize and identify early ESCC under conventional endoscopic 

white-light imaging, and its sensitivity, specificity, accuracy, positive predictive value 



and negative predictive value reached 97.8%, 85.4%, 91.4%, 86.4% and 97.6%, 

respectively. with the assistance of AI, the accuracy of diagnosis increased from 

81.7% to 91.1%, and the diagnostic ability of endoscopists was greatly improved.[3] 

The AI model developed by Jiangming Xu et al. can assist in distinguishing the type 

of intrapapillary capillary loops in ESCC, and its classification accuracy reached 

89.2% with a high level of diagnosis.[4] Guoxin Zhang et al. trained to obtain a system 

that can differentiate esophageal protruded lesions. It also can be used to distinguish 

esophageal leiomyoma, esophageal cyst and esophageal papilloma.[5]  

Barrett's esophagus (BE) is a precancerous lesion of esophageal adenocarcinoma 

(EAC), and considering the high mortality rate of patients with EAC, early 

identification of neoplastic BE is beneficial to reduce their mortality.[6] The AI model 

constructed by Alanna Ebigbo et al. can accurately distinguish normal BE from early 

EAC with an accuracy of 89.9%.[7] 

Diagnosis of Gastric Lesions 

According to statistics,[1] there were about 1,033,000 new cases and 783,000 deaths of 

gastric cancer worldwide in 2018; Gastric cancer is the fifth most common 

malignancy worldwide and the third leading cause of cancer-related deaths 

worldwide. The five-year survival rate of patients with advanced gastric cancer ranges 

from 5% to 25%, and the five-year survival rate of patients with early gastric cancer 

(EGC) is as high as 90%.[8] 

Gastric atrophy and intestinal metaplasia are precancerous conditions of gastric 

cancer, which is of great importance in the development of gastric cancer. Honggang 

Yu et al. constructed a system called ENDOANGEL that can detect gastric 

precancerous conditions by image-enhanced endoscopy and conducted a multicenter 

diagnostic study. The results showed that the diagnostic accuracy of this system was 

high, which was similar to that of experts and superior to that of non-experts, and 

provided the possibility of a wide range of applications in assisting the diagnosis of 

gastric precancerous conditions.[9] The team also developed a system for assisting in 

the identification of EGC with an accuracy rate of 92.5%,[10] and its effectiveness was 

further validated in a multicenter clinical trial.[11] Xiaoping Zou et al. also developed a 



real-time artificial intelligence-assisted system for detecting EGC and validated it in 

endoscopic images from multiple centers, with accuracy of 85.1% to 91.2% in 

different centers, which is expected to be an important aid for EGC screening.[12]  

The development of magnifying staining endoscopy has improved the diagnosis rate 

of EGC, but the difference in diagnostic level between physicians has been a major 

challenge. Chaohui Yu et al. developed an AI model to accurately identify EGC by 

magnifying endoscopy with narrow band imaging (ME-NBI) and improve the 

diagnostic level of endoscopists.[13] Jie Tian et al. also developed a model for 

identifying EGC under ME-NBI. The area under the receiver operating characteristic 

curve (AUC) of the model was 0.808, and the diagnostic level was similar to that of 

senior doctors.[14] AI has great potential in clinical applications and is expected to 

provide an important auxiliary power for the diagnosis of EGC in magnifying staining 

endoscopy. 

It is crucial for endoscopic curative resection to accurately delineate cancer margins, 

differentiation degree and depth. Therefore, Honggang Yu et al. developed an AI 

model for predicting the resection margin of EGC under indigo carmine 

chromoendoscopy (CE) or white light endoscopy (WLE), achieving 85.7% and 88.9% 

accuracy, respectively.[15] Meanwhile, the team also constructed another model that 

can accurately identify the differentiation status and delineate margins of EGC in ME-

NBI endoscopy with accuracy of 83.3% and 82.7%, respectively, which can provide 

an aid for endoscopic treatment of early cancer. [16] 

In December 2020, Honggang Yu et al. held a large-scale human-machine 

competition to evaluate the performance of the AI system developed by the team in 

diagnosing EGC and predicting invasion depth and differentiation status. 46 

endoscopists from 44 hospitals in 19 provinces in China participated in this study. The 

AI system and endoscopists identified 100 lesions from Peking University Cancer 

Hospital in the same setting. The results showed that the AI system acquired 89.00%, 

78.57% and 71.43% accuracy in diagnosing EGC, predicting invasion depth and 

differentiation status, respectively, which was above the average diagnostic level of 

endoscopists (85.67%, 63.75% and 64.41%, respectively). At the same time, this AI 



system achieved real-time lesion diagnosis synchronized with video, using less time 

than endoscopy specialists.[17] This AI system has great potential for EGC screening 

and can be useful in clinical practice. 

Helicobacter pylori (Hp) infection is closely associated with functional dyspepsia, 

peptic ulcer and gastric cancer. However, the gold standard for diagnosis of HP 

infection under gastroscopy is biopsy, and it is difficult to make an accurate judgment 

of HP infection solely by endoscopic imaging. The AI-assisted system developed by 

Jianmin Si et al. has a high diagnostic value with accuracy of 84.5% in diagnosing HP 

infection.[18]  

Gastric ulcers are one of the more common lesions in the stomach, and endoscopists 

capable of identifying benign and malignant ulcer vary. Hence, Honggang Yu et al. 

developed a system to identify gastric ulcer and distinguish benign and malignant 

ulcer. It had accuracy of 98.0%, 98.0%, and 85.0% in distinguishing normal mucosa 

from benign ulcers, normal mucosa from malignant ulcers, and benign from 

malignant ulcers, respectively, which has good application prospects.[19]  

Monitoring blind spots 

Digestive endoscopy is one of the most common methods to diagnose lesions in the 

upper gastrointestinal tract. However, endoscopists operate at varying levels, reducing 

the detection rate of gastric cancer and precancerous conditions. A complete view of 

the entire GI tract is a prerequisite to avoid missing lesions. According to the 

gastroscopy operation Guidelines written by the European Society of Gastrointestinal 

Endoscopy[20] and gastroscopy screening protocols in Japan,[21] Honggang Yu et al. 

divided the observation area of gastroscopy into 26 parts and innovatively developed 

an AI system based on deep learning to monitor the blind spots during gastroscopy, 

which achieved average accuracy of 90.02% in predicting 26 sites.[22] In a subsequent 

single-center randomized controlled trial, they validate the effectiveness and safety of 

this system in painless gastroscopy. The results showed that the blind spots rate of 

5.86% in the experimental group with AI assistance was much lower than that of the 

control group without AI assistance (22.46%). In addition, the team conducted a 

multicenter randomized clinical trial to further validate the generalizability and 



effectiveness of the model.[11] To evaluate the performance of the model in different 

gastroscopy types, the team also conducted a 3-parallel-group and randomized trial to 

compare the blind spot rate of endoscopists in the painless, ultra-fine, and plain 

gastroscopy groups with and without AI assistance, showing that the system 

significantly reduced the blind spot rate gastroscopy in all subgroup.[23] This system 

can be a good tool for monitoring and improving the quality of gastroscopy. 

Evaluation of Esophagogastric Varices 

Rupture of gastroesophageal varices is the most common fatal adverse event of 

cirrhosis. Endoscopy is regarded the standard for diagnosis and risk stratification of 

gastroesophageal variceal bleeding. However, accurate assessment for varices relies 

on the extensive experience and theoretical basis of the endoscopist, resulting in a 

more subjective judgment of the findings. Therefore, Honggang Yu et al. developed 

an AI model trained with 8566 images of gastroesophageal varices from 3021 patients 

and 6152 images of normal esophagus and stomach from 3168 patients, which 

achieved 97.00% and 92.00% accuracy in detecting esophageal varices and gastric 

varices, respectively. The accuracy of predicting the size, form, color, bleeding signs 

is comparable to or even better than that of endoscopists.[24] The same high diagnostic 

level was achieved in multicenter validation. Thus, the model is expected to be an 

important tool to assist endoscopists in a more objective and precise evaluation of risk 

stratification of gastroesophageal varices. 

AI IN COLORECTAL ENDOSCOPY 

Assessing The Quality of Bowel Preparation 

Bowel cleanliness is one of the most important factors affecting the detection rate of 

adenomas and polyps. Good bowel preparation can ensure adequate visualization of 

the intestinal mucosa, thus improving the quality of colonoscopy. However, the 

current clinical assessment of bowel cleanliness is more subjective or incomplete, 

which affects the evaluation of patients for early colonoscopy review. According to 

the Boston score standard, Honggang Yu et al. developed a bowel preparation quality-

control system, which achieves a high accuracy of 91.89% for the recognition of the 

four-category images of the Boston score. And it can not only prompt bowel 



preparation every 30 seconds, but also display the cumulative proportion of bowel 

preparation scores in real time, thus assessing the quality of bowel preparation more 

objectively and stably.[25]  

Ancillary Detection of Intestinal Lesions 

Colorectal cancer is the third most lethal malignancy worldwide.[1] Improving the 

detection rate of adenomas is critical to reduce the incidence of colorectal cancer. 

Each 1.0% increase in adenoma detection was associated with a 3.0% reduction in 

interval colorectal cancer risk.[26] A meta-analysis found that the rate of missed 

adenomas during colonoscopy was as high as 26%.[27] At present, the two main 

reasons for missed adenoma detection include the following: inadequate observation 

of the mucosa and concealed polyps that are difficult to identify. The development of 

AI presents an opportunity to solve the above problems. 

To address the problem of inadequate observation of the mucosa, Honggang Yu et al. 

developed an AI system for monitoring the real-time withdraw speed, and obtained 

the "Hamming distance" by calculating the similarity between images through 

computer vision technology, which innovatively realized the withdraw speed 

monitoring of the lower gastrointestinal tract and could prompt the withdraw speed in 

real time.[28] When the withdraw speed is too fast, it prompts the endoscopist to slow 

down and observe the intestinal mucosa carefully. In a single-center randomized 

clinical trial, the rate of adenoma detection doubled in the AI-assisted group compared 

with the non-AI-assisted group (16% vs. 8%). 

To solve the problem of concealed intestinal polyps that are difficult to identify, 

Misawa M et al. developed an AI-assisted polyp detection system and validated it 

with a new public database. The per-polyp sensitivities for all, diminutive, protruded, 

and flat polyps were 98.0%, 98.3%, 98.5%, and 97.0%, respectively.[29] The 

automated polyp detection system developed by Xiaogang Liu and Pu Wang et al. 

also has high sensitivity and specificity, which can significantly improve the detection 

rate of adenomas and polyps in clinical trials and is expected to play an important role 

in clinical practice.[30-34]  

Ancillary Diagnosis of Intestinal Lesions 



It is very important to identify the type of polyp for the treatment and prognosis of 

patients. Benign polyps have minimal risk of cancer and no need no need for 

preventive resection; adenomatous polyps and serrated polyps require to be resected 

to prevent colorectal cancer; and colorectal cancer requires immediate endoscopic or 

surgical intervention to prevent further progression.[35] The intelligent detection model 

of colorectal cancer obtained by training with 464,105 images by D.J. Zhou et al. has 

a high diagnostic level in distinguishing benign and malignant lesions, which is 

helpful to improve the detection rate of colorectal cancer in clinical practice.[36]  

Endoscopic submucosal dissection (ESD) and endoscopic mucosal resection (EMR) 

are applied in treating superficial colorectal neoplasms, but are contraindicated by 

deeply invasive colorectal cancer. Thus, it is important to determine the invasion 

depth of tumor. S. Liu et al. developed an AI system and validated their model using 

1634 white-light colonoscopy (WLC) images. The results showed that the system can 

distinguish noninvasive or superficially submucosal invasive neoplasms from deeply 

invasive CRC with high accuracy, sensitivity and specificity, helping to determine the 

application of ESD and EMR.[37]  

AI IN CAPSULE ENDOSCOPY 

Capsule endoscopy, as a non-invasive examination, is increasingly used for the 

diagnosis of gastrointestinal diseases, especially for small-bowel diseases. However, 

capsule endoscopy generates numerous images, and analysis is time-consuming and 

boring, which easily leads to visual fatigue of endoscopists and makes it difficult to 

ensure diagnostic accuracy. Therefore, AI-assisted systems have become a hot topic in 

the industry. Its main research directions include the following: 

Reduce Reviewing Time and Improve Efficiency 

Zhen Ding et al. developed a model based on deep learning with more than 100 

million images to distinguish abnormal and normal small bowel images, achieving a 

sensitivity of 99.88%. The AI capsule endoscopy review time was only 5.9 min, 

which greatly improved the work efficiency.[38]  

Improve The Accuracy of Lesion Diagnosis 

AtsuoYamda et al. trained an AI system with sensitivity, specificity and accuracy of 



88.2%, 90.9% and 90.8%, respectively, for identifying erosions and ulcerations under 

capsule endoscopy, which not only improved the accuracy of lesion diagnosis, but 

also greatly reduced the workload of endoscopists.[39] An AI-assisted model for 

identifying gastric lesions trained by Zhaoshen Li et al. using magnetic capsule 

endoscopy images had a sensitivity of 96.5%, which could greatly reduce the 

difference in diagnostic level between endoscopists.[40] Zhen Ding et al. also 

developed an AI system to assist in identifying and diagnosing small intestinal 

bleeding with a sensitivity of 99.0%, which made it more focused on the diagnosis of 

small intestinal bleeding. [41] 

AI IN ERCP 

It was found that 7% to 12% of patients with cholelithiasis have common bile duct 

stones as a result of gallstones migrating from the gallbladder into the bile duct.[42] To 

date, endoscopic retrograde cholangiopancreatography（ERCP）remains the first 

choice of treatment for bile duct stones.[43] ERCP is one of the difficult operations in 

digestive endoscopy, and there are the main factors affecting the difficulty of stone 

extraction With Endoscope: the number and size of common bile duct stones, 

angulation and diameter of the distal common bile duct. Analysis and stratification of 

these factors can ensure that the endoscopist can more accurately predict the difficulty 

of stone extraction, while adopting a more appropriate treatment. Based on this, 

Honggang Yu et al. developed an intelligent difficulty scoring and assistance system 

that can automatically measure stone size and distal common bile duct and 

duodenoscope diameters with a precise level of measurement.[44] It can play an 

important role in assisting endoscopists to select appropriate surgical accessories and 

treatment and to make more accurate surgical plans. 

AI IN ENDOSCOPIC ULTRASOUND 

Endoscopic ultrasound (EUS) is an important tool for the diagnosis of biliary and 

pancreatic diseases. however, a great deal of professional knowledge and rich 

experience are the prerequisites for excellence in endoscopic ultrasound. In addition, 

the long training period and high training cost of have greatly hindered the promotion 

and application of EUS in clinical practice.[45] The rapid development of AI in the 



field of medical imaging has brought an opportunity for the promotion of EUS. 

Monitoring Quality and Supporting Training 

Honggang Yu et al. developed a deep-learning–based pancreas segmentation and 

station recognition system, which could be used to assist endoscopists to recognize 

the six basic sites of pancreatic sweep with accuracy of 94.2%. It can not only 

monitor the quality of pancreas examination, but also serve as a good training system 

for guiding novice physicians.[46] Meanwhile, the team also developed an 

augmentation system for standardized bile duct (BD) scanning and assisted 

endoscopists in identifying the four basic stations of BD scanning, with accuracy of 

93.3% and a Dice of 0.77 for BD segmentation, which not only assisted in identifying 

the standard workstations and suggested endoscopists to perform the corresponding 

operations, but also segmented BD with high precision, automatically measured the 

diameter of bile duct, and simplified the operation.[47] These two systems significantly 

improved the accuracy of site identification of endoscopists in the experiments. 

Improving Accuracy in Identifying Lesions 

The diagnosis and differentiation of pancreatic lesions is also a challenge in 

ultrasound endoscopy. Maria NB et al. developed an AI model using 1,174,461 

unique EUS images, which could accurately distinguish autoimmune pancreatitis 

from other study conditions (pancreatic ductal adenocarcinoma, chronic pancreatitis 

and normal pancreas) with sensitivity and specificity of 90% and 85%, respectively, 

and has the potential to become an important auxiliary tool in the clinical diagnosis of 

autoimmune pancreatitis.[48]  

CHALLENGES AND PROSPECTS OF AI IN DIGESTIVE ENDOSCOPY 

AI has been developed significantly in endoscopy, especially the deep learning 

algorithms that have emerged in recent years, which is comparable with endoscopic 

experts in disease diagnosis, lesion detection, and operation quality control. In the 

future, it is expected to solve the problems existing in the clinical practice of digestive 

endoscopy, such as difficulty in identifying lesions and poor operation. However, it is 

only the first step to develop model in the application of AI to digestive endoscopy, 

and there are still serious challenges in integrating the model into the complex clinical 



practice. 

Data Sharing  

Deep learning discovers distributed feature of data by automatically characterizing 

features of objects such as images and sounds.[49] Large and representative dataset is a 

prerequisite to ensure that the automatic tuning process achieves an optimal solution 

and is also a useful tool for robustness test of the model.[50-51] However, the incidence 

of important diseases in digestive endoscopy such as early gastrointestinal cancer, 

inflammatory bowel disease, serrated polyps is relatively low. With the increasingly 

widespread application of deep learning, the lack of data is becoming a common 

problem faced by AI researchers in digestive endoscopy.[52-53]  

It is no doubt that promoting data sharing can greatly alleviate the pressure of data 

quantity facing the development of AI in digestive endoscopy, but a series of tasks 

including data collection, cleaning, and local calibration need to be completed by a 

huge amount of manpower. Besides, anonymity as well as a broad informed consent 

process should be ensured, and the confidentiality of patient privacy may become a 

critical barrier during data sharing at a larger scale of dissemination.[54]  

Transparency of the Model 

Transparency of data and AI algorithms is another major issue. The relationship 

between transparency of deep learning and AI models is multi-layered. On the one 

hand, the accuracy of model predictions largely depends on the accuracy of the 

training data annotations input to the algorithm. Therefore, it is crucial for model 

accuracy to ensure transparency of the labels so that the training process of the 

algorithm can be monitored by the third party.[55]  

On the other hand, transparency of the model is also reflected in the interpretability of 

its results. interpretability is the ability of a model to enable humans to understand or 

explain the basis of a decision or prediction.[56] If predictions can be explained, then 

humans can validate whether their predictions are valid or not.[57] Thus, the 

interpretability of a model may improve physicians' acceptance of predictions.[58] 

Although the application of deep learning in digestive endoscopy has been in full 

swing, the exploration of interpretability is still limited. Honggang Yu et al. used heat 



map to demonstrate the regions of focus when deep learning predicts EGC, making an 

initial attempt at interpretability.[10] The interpretability of the model can be further 

improved by visualizing high-dimensional data and masking mapping,[59] but its 

effectiveness still needs to be further explored. In the future, attempts regarding 

interpretability may be the key to promote the clinical application of AI in digestive 

endoscopy. 

Quality Standards of the Model 

AI in digestive endoscopy has gone through the initial stage – validation. However, 

the lack of data standards, testing platforms, and third-party databases makes it 

difficult to obje 

ctively measure the performance of current AI algorithms. At present, the training of 

AI models still faces a series of problems: (1) the data used in the studies are mostly 

from a single center and small samples, and there is bias of data selection; (2) the 

methods and standards of data labeling are not uniform, lacking representativeness; 

(3) the quality of data is easily affected by factors such as operators' habits, operation 

level and storage methods, and quality is difficult to guarantee. Compared to building 

a large-scale data sharing system, it is more feasible and urgent to establish real-time 

measurement standards based on a fully closed independent sandbox monitoring 

environment, where data collection, labeling, testing, and scoring are all performed by 

a fair and impartial third party.[60]  

Ethical Challenges of AI In Digestive Endoscopy Diagnosis and Treatment  

Large-scale multicenter clinical studies of AI in digestive endoscopy have not been 

conducted, and the potential drawbacks have not been fully disclosed. Based on the 

current results of single-center clinical studies, the application of AI may lead to 

unnecessary polypectomies, causing additional economic burden and potential 

complications.[30] In addition, another more serious issue is how to establish a sound 

accountability for medical errors with AI. AI technology will undoubtedly change the 

traditional physician-patient relationship, and intrinsic to this change is a potential 

shift in physicians' sense of personal responsibility. For example, in the prediction of 

the nature of gastrointestinal tumors, misjudgments caused by AI can result in patients 



undergoing unnecessary surgery or delaying the diagnosis and treatment.[61] The 

source of accountability is then multiple--the physician, the vendor providing the 

software platform, the developer who constructed the algorithm, or the source of the 

training data. It is an important part of the clinical application of AI in digestive 

endoscopy to establish a sound system of accountability, but it remains to be seen 

where the ultimate responsibility will lie. 

In conclusion, AI is expected to play a crucial role in improving the quality of 

endoscopy, reducing the rate of missed lesions, and alleviating the lack of training 

resources. However, most studies are still in exploration and have not yet been applied 

to clinical practice. Moreover, researchers face serious challenges such as limited 

data, insufficient transparency of algorithms, inconsistent quality standards, and 

ethical issues. With the development of technology and industry standardization, it is 

believed that in the coming future, AI for endoscopy will be widely used in clinical 

practice, greatly improving the quality of digestive endoscopy and improving the 

prognosis of patients. 
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