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ABSTRACT

Background: Gastric precursor lesions and neoplasia with very delicate changes in the gastric mucosa could be easily 
missed or misdiagnosed under endoscopy. Here we developed an automatic real-time pattern recognition tool based on 
convolutional neural networks (CNNs) algorithm to help endoscopists in detection of chronic atrophic gastritis (CAG) and 
gastric cancer (GC) lesions. Methods: The five-convolution-layer ZF model and thirteen-convolution-layer VGG16 model 
were combined in our neural network A total of 10,014 CAG and 3724 GC annotated images were used in the network 
training. Another independent set consisted of 50 CAG, 50 GC and 100 negative controls images were used to evaluate the 
performance of the final network. Results: In CAG detection, the performance of our model was much better than the 
average performance of the 77 endoscopists in sensitivity, specificity and accuracy (95% versus 74%, 86% versus 82%, 
90% versus 78%, respectively). In GC detection, the performance of our model achieved a slightly higher sensitivity (90% 
versus 87%), but a lower specificity (50% versus 74%) and accuracy (70% versus 80%) than the average performance of the 
89 endoscopists. Conclusion: In conclusion, we provided a CNN based computational tool to improve the detection of 
CAG and GC under endoscopy, and simplify diagnostic procedures.

Key words: gastric precursor lesion, gastric cancer, deep learning, convolutional neural network, computer-aided 
endoscopic detection support system

INTRODUCTION

Gastric cancer (GC) is reported as the fifth most 
commonly diagnosed malignancy in the world with 
about one million new cases occurred in 2012 (951,000 

cases, 6.8% of the total).[1] More than 70% of GC cases 
(677,000 cases) occurred in developing countries, and 
half occurred in Eastern Asia (mainly in China). 
Additionally, GC is the third leading cause of cancer 
death in both sexes worldwide (723,000 deaths, 8.8% of 
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the total).[1] However, the prognosis of GC varies a lot 
among different stages. The 5-year survival rate of early 
gastric cancer (EGC) almost exceeds 90%, whereas less 
than 20% advanced GC patients can survive for more 
than 5 years.[2,3] Therefore, early detection and regular 
surveillance in the high-risk population are probably the 
most effective strategies to improve the survival rate of 
GC. A multistep progression which is predominantly 
triggered by H. pylori infection and followed by chronic 
gastritis, atrophic gastritis (AG), intestinal metaplasia 
(IM) and finally intestinal-type GC, has been widely 
accepted.[4–7] Particularly, AG is considered as a 
necessary transitional step in gastric carcinogenesis,[5,8] 
which is characterized by chronic inflammatory 
processes of gastric mucosa that leads to the loss of 
glandular structure and a reduction of gastric secretory 
function.[8] One cohort study indicated that the annual 
incidence rates of GC in patients with AG is 4.5 times of 
that in the general population.[9] Thus, accurate detection 
of AG along with regular surveillance and subsequent 
management could be very helpful to control GC in an 
early stage.

However, many premalignant lesions and EGCs with 
very delicate changes in the gastric mucosa demand 
extremely careful observation and inspectional skills, and 
such lesions (especially superficial flat ones) may be 
easily missed or misdiagnosed by conventional white 
light imaging (WLI) endoscopy. Recently, a retrospective 
cohort study in England reported an endoscopy miss 
rate of approximately 8.3% in 2,727 patients with GC.[10] 
Various advanced endoscopic modalities have been 
developed to improve the detection rate and diagnostic 
accuracy, such as high definition endoscopy (HDE), 
narrow band imaging (NBI),[11] magnifying endoscopy, 
chromoendoscopy and etc.[12] Nevertheless, the 
advanced endoscopic techniques are very expensive, and 
additional operation trainings are also required, making it 
impossible to be widely utilized in primary health 
centers. A readily accessible, cost-effective and compar-
atively reliable diagnostic approach for detecting 
premalignant lesions and ECG was strongly needed.

Due to the development of big data, deep learning 
algorithms have become the research focus of artificial 
intelligence.[13] Convolutional neural networks (CNNs), 
known as the most successful deep learning strategy 
applied to image classification,[14] have brought about a 
revolution in computer vision.[13] CNNs can extract a set 
of transformations from inputted data automatically and 
avoid manual design of specific feature detectors.[14] 
Using CNNs to analysis biomedical image has become 
more and more popular in many clinical scenarios, such 
as classification of histologic and histopathologic 
images,[15,16] diagnosis of Alzheimer disease,[17–20] differen-
tiating breast lesions[21] and recognition of skin 
cancers.[22] However, few works have explored to 

address the automatic diagnosis of gastric premalignant 
lesions and neoplasia.

In this study, we constructed two independent 
gastrointestinal (GI) image datasets, and fine-tuned two 
types of deep learning models named ZF[23] and 
VGG16[24] based on Faster R-CNN (Faster region-based 
convolutional neural network)[25] to identify CAG and 
GC lesions. The results were compared with GI doctors 
with different seniority to evaluate the performance of 
those models.

MATERIALS AND METHODS

Patients information and study design
We conducted a single-center, retrospective diagnostic 
study and it was performed after the protocol approved 
by the Institutional Review Board and ethics committees 
of Beijing Friendship Hospital, Capital Medical 
University. We reviewed our endoscopic database to 
identify all patients with diagnosis of CAG and GC (in 
both early and advanced stage) from January 1st in 2013 
to June 10th in 2017. Informed consent was not 
required because only de-identified patient data were 
obtained.

Data acquisition and processing
Distinct endoscopic images and relevant medical records 
of the patients were finally extracted when they fulfill 
either of the following criteria: (1) Diagnosis of CAG 
should be proved by histological classification of the 
Updated Sydney System after applying its gastric biopsy 
sampling protocol.[26] (2) Diagnosis of GC must be 
endoscopically confirmed together by any two out of the 
nine specific GI experts certified by Chinese Gastroen-
terological Endoscopic Society. The diagnostic criteria 
were mainly based on personal experience according to 
morphological features of lesions with or without 
pathological results.

Exclusion criteria were: (1) The biopsy sites of CAG did 
not strictly adhere to the standard endoscopic biopsy 
sampling procedure mentioned in the Updated Sydney 
System or lesions in the endoscopic images were difficult 
to be identified; (2) The endoscopic images showed 
indistinct involvement of GC; (3) The patients who have 
comorbidity of malignancy of other systems; (4) The 
endoscopic images appear to be unclear and/or the 
shooting angles do not reach our requirements.

For both CAG and GC detection tasks, we established a 
training dataset and a testing dataset with non-
overlapping requested images (Figure 1A). The testing 
datasets which consisted of equivalent positive and 
negative samples were prepared for model validation. As 
for CAG, we used images of chronic superficial gastritis 
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Figure 1. Schematic illustration of data composition and processing and an overview of Faster R-CNN structure. (A) Composition of training and testing 
dataset for both CAG and GC and post-processing before training. 10064 images of CAG were extracted from our endoscopic database, among which 50 
images were randomly set aside. The other 10,014 images consisted of the training dataset for CAG. The testing dataset contained another 50 images of 
CSG randomly selected as negative samples and 50 images of CAG pick-out before. Similarly, 3774 images of GC were extracted and we picked out 50 
images randomly from them. The testing dataset of GC contained additional 50 non-cancer images randomly selected and 50 images of GC picked out 
before. All the images included were de-identified immediately and then annotated by six endoscopic experts according to a back-to-back protocol. (B) A 
two-stage principle of Faster R-CNN in lesion location. The first stage is to use feature maps of the last convolution layer to generate candidate ROIs. The 
second stage is to accomplish lesion recognition, position and classification. R-CNN: Faster region-based convolutional neural network; CAG: chronic 
atrophic gastritis; GC: gastric cancer.

(CSG) as its negative samples. And with respect to 
negative samples for GC, we enrolled images that 
fulfilled at least one of the following diagnosis: benign 
gastric ulcer and polyps, gastric stromal tumors and 
gastric heterotopia pancreas (all proved by histopatho-
logical results) (Supplementary Table S1). All images 
were de-identified immediately.

Data annotation
Six experienced endoscopists were recruited to annotate 
images in the training datasets with bounding boxes. The 
boxes were supposed to be drawn in the exact biopsy 
sites according to both endoscopic descriptions and 
histological results. Each image was annotated by two 
endoscopists back-to-back (See Supplementary 
Materials). If the bounding boxes annotated by different 
endoscopists did not differ a lot from each other, the 
intersection area of both boxes were adopted as the final 
annotation. If the boxes were poorly overlapped 
(intersection area < 50% of the total area), such images 
would be picked out and would be discussed together by 
all the 6 endoscopists mentioned above. As a result, 364 
images of CAG and 92 images of GC were afterwards 
discussed together by all the doctors.

Modified faster R-CNN
An overview of the structure of Faster R-CNN is shown 
in Figure 1B. In training process, we compared a five-
convolution-layer ZF model[23] with a thirteen-
convolution-layer VGG16 model[24] based on Faster R-
CNN. We firstly pre-trained both the ZF and the 
VGG16 model with ImageNet dataset and randomly 
initialized all new layers by drawing weights from a zero-
mean Gaussian distribution with standard deviation of 
0.01. We fine-tuned the whole layers of region proposal 
network (RPN) and the final bounding box regression 
and classification layers at the same time so that the 
standard four-step alternating algorithm of Faster R-
CNN training process could be modified to an end-to-
end one. The end-to-end process was more efficient for 
speeding up the training procedure and getting higher 
detective quality. We also applied the ‘image-centric’ 
sampling strategy. A number of mini-batches were 
generated from a single image that contained many 
positive and negative anchors. We randomly sampled 
256 anchors in each image to compute the loss function 
of a mini-batch where the ratio of positive and negative 
anchors was 1:1. If there were fewer than 128 positive 
samples in an image, we padded the mini-batches as 
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negative ones. Learning rate of 0.001 was used for 50k 
mini-batches and 0.0001 for the next ones.

The readily processed network was afterwards used to 
finish the CAG and GC detection test with the 
threshold of classification score as 0.85. It was thought 
to be negative if none of suspicious lesion was detected 
in a single testing image. Four statistical parameters 
named TP, FN, FP, TN were calculated (TP, true 
positive; FN, false negative; FP, false positive; TN, true 
negative). The final accuracy of different datasets was 
revealed for identifying the performance of Faster R-
CNN.

Performance evaluation of GI doctors
Every GI doctor involved in the validation tasks was 
assigned to the same testing dataset as the computational 
models were. Their performance was firstly evaluated by 
overall sensitivity, specificity and accuracy against 
histopathological diagnosis. Besides, all the doctors in 
each test were stratified into four levels (from Level I to 
Level IV) by years of endoscopic operation (Level I, < 5 
years; Level II, 5–10 years; Level III, 10–15 years; Level 

IV, ≥ 15 years). We further estimated the average 
diagnostic reliability in every one of the four levels.

Statistical analysis
We evaluated performance of networks and GI doctors 
by calculating sensitivity, specificity, accuracy, positive 
predictive value (PPV), and negative predictive value 
(NPV). Inter-observer agreement of GI doctors was 
evaluated by Fleiss kappa measurement (more than 2 
o b s e r v e r s )  w i t h  9 5 %  c o n f i d e n c e  interval.[27] 
Interpretation of kappa values was done according to 
Landis and Koch.[28] Comparisons between the best 
computational model and GI doctors in sensitivity, 
specificity, and accuracy were analyzed by Pearson’s chi-
squared test. P-value < 0.05 was considered statistically 
significant.

RESULTS

Description of datasets
Totally, 10,064 annotated images of CAG with definite 
histopathological results were obtained, among which 50 
images were randomly set aside for testing. Another 50 
images of CSG were also included as negative samples in 
the testing dataset. We then input the remaining 10,014 
CAG images into Faster R-CNN network for machine 
learning. Examples of annotated images of CAG are 
demonstrated in Figure 2A.

Similarly, 3774 annotated images of GC concurrently 
endoscopically diagnosed by GI experts were collected. 
To be specific, 1540 images were diagnosed as EGC, 
among which 462 images had definite pathological 

verification. We therefore randomly extracted 50 out of 
the 3774 images and combined them with additional 50 
images of non-cancerous lesions mentioned above to set 
up the testing dataset. The remaining 3724 GC images 
were put into training. Examples of annotated images of 
GC are demonstrated in Figure 2B.

Performance of faster R-CNN
For both CAG and GC detection, the ZF and the 
VGG16 models were trained meanwhile built upon a 
Faster RCNN architecture. Performance of these 
models were evaluated upon the testing dataset. We 
chose the model with the best accuracy to represent the 
final performance and to compare with GI doctors 
(Table 1).

A highest accuracy of 90% (90/100) was achieved by 
adapting the VGG16 model with iteration of 50,000 and 
threshold of 0.85 in CAG detection task (Supplementary 
Table S2A, sensitivity, 94.0%; specificity, 86.0%; PPV, 
87.0%; and NPV, 93.5%). As for GC detection, the ZF 
model with iteration of 100,000 and threshold of 0.85 
achieved the optimal accuracy of 70.0% (70/100) (Suppl
ementary Table S2B, sensitivity, 90.0%; specificity, 
50.0%; PPV, 64.3%; and NPV, 83.3%).

Performance of GI doctors
There were 77 and 89 GI doctors with different seniority 
taking the CAG and GC detection test respectively. 
Their baseline characteristics were presented in Supplem
entary Table S3.

For CAG detection, the sensitivity, specificity and 
accuracy of the all 77 GI doctors with different seniority 
respectively range within 16%–100% (median 78%, 
average 74%), 0%–94% (median 88%, average 82%), 
and 21%–87% (median 81%, average 78%). The 
sensitivity of Level I to Level IV was separately 61.4%, 
72.8%, 82.2% and 79.8% while the specificity was 
respectively 78.2%, 73.8%, 81.4% and 85.4%. The 
accuracy of them was respectively 69.8%, 73.3%, 81.1% 
and 82.6%. Smooth rising trends were observed in all of 
the three statistical parameters, despite a slight decrease 
of specificity in Level II compared with Level I.

For GC detection, the sensitivity, specificity and 
accuracy respectively range within 48%–100% (median 
88%, average 87%),  0%–62% (median 78%, 
average74%), and 35%–73% (median 82%, average 
80%). The sensitivity of Level I to Level IV was 
respectively 84.6%, 83.6%, 89.6% and 87.4%. The 
specificity ranged from 68.8%, 70.0%, 73.2% to 79.4%, 
while the accuracy was 76.7%, 76.8%, 81.4% and 83.4% 
respectively. The above three parameters completely 
presented as incremental diagrams in the bar chart from 
Level I to Level IV in spite of slight reduction of 
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Figure 2. Examples of annotated images for both CAG and GC. (A) Examples of images in the training dataset for CAG with bounding boxes. Each box 
was located manually in the exact biopsy site according to endoscopic descriptions and histological results, followed by cross-contrast procedure. (B) 
Examples of images in the training dataset for GC with bounding boxes. The images were annotated manually with the boxes in the biopsy sites and as 
large as possible without exceeding the boundary of the lesions. CAG: chronic atrophic gastritis; GC: gastric cancer.

sensitivity in Level II and Level IV.

The inter-observer agreement of doctors in different 
levels regarding diagnosis of CAG and GC is listed in Su
pplementary Table S4. The best agreement was all 
obtained by doctors in Level IV.

Comparison of Performance between Faster 
R-CNN and GI Doctors
Compared with average performance of the 77 doctors, 
performance of the best model is much better in 
sensitivity, specificity and accuracy (95% versus 74%, 
86% versus 82%, 90% versus 78%, respectively).

After classifying all the GI doctors based on seniority, an 
overview of performance the optimal model and the 77 
doctors is illustrated in Supplementary Figure S1A. Both 
TP and TN of the optimal network successfully exceed 
those of the level IV doctors, indicating that sensitivity 
and specificity as well as accuracy of Faster R-CNN have 
already reached expert-level.

Statistical differences between the network and 
different-level doctors are observed in the sensitivity (all 
levels, Ps < 0.05) and accuracy (all levels, Ps < 0.05, 
except Level III, P = 0.103). However, there is no 
significant difference in specificity (all levels, Ps > 0.05, 
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except Level II, P = 0.034, shown in Figure 3A).

Except a slightly elevated sensitivity (90% versus 87%), 
the specificity and accuracy of our network are 
significantly lower than the average performance of the 
doctors (50% versus 74%, 70% versus 80%, respectively).

An overview of performance between Faster R-CNN 
and the 89 doctors classified to different levels is 
demonstrated in Supplementary Figure S1B. The 
sensitivity of our network is equal to GI experts (Level 
IV doctors) while the specificity is much lower.

There is no significant difference between the network 
and doctors of different levels in sensitivity (all levels, Ps 
> 0.05) and accuracy (all levels, Ps > 0.05, except Level 
IV, P = 0.03). However, significant difference in 
specificity was observed (all levels, Ps < 0.05). The 
specificity of our network is much lower than doctors in 
all different levels (Figure 3B).

DISCUSSION

In this study, we have provided an automatic real-time 
lesion detector focusing on endoscopic diagnosis of 
CAG and GC based on deep convolutional neural 
network algorithm. The performance of our model was 
also evaluated and compared to board-certified GI 
doctors of different seniorities.

For CAG detection, the best model achieved a gastroen-
terologist-level performance. The sensitivity, specificity 
and accuracy (95%, 86%, 90%, respectively) of this 
model all exceed those of the level IV (the highest 
seniority) doctors. For GC detection, the best model 
achieved superior sensitivity (90% versus 87%) but 
inferior specificity and accuracy (50% versus 74%, 70% 
versus 80%, respectively) compared with average 
performance of all the 89 doctors. These results 
suggested that the network made positive diagnosis as 
much as possible and consequently aggravates misdia-
gnosis of non-cancer lesions. Considering that it is a 
standard procedure to take subsequent biopsies for 
making definite diagnosis before treatment, the over-
diagnose of our model to ensure a high sensitivity would 
be acceptable for endoscopists.

Some GCs showed very slight change of mucosa, 
especially some superficial lesions, which brought 
challenges to endoscopists. For these lesions, our 
network may server as a useful complement to human 
eyes. Some images of unnoticeable GCs correctly 
detected by our network are shown in Supplementary Fi
gure S2. We also extracted the negative cases misdia-
gnosed as GCs by the network (Supplementary Figure S
3). Because of high similarity of morphology with GCs, 
inputting a certain number of such images for training 

would be helpful to reduce the false positive rate. 
Besides, the inter-observer agreement is unsatisfactory 
even within doctors of Level IV (Kappa, 0.584). In 
contrast to obvious diagnostic variations of doctors, our 
network is stable, uniform and repeatable.

Although several studies have been reported for 
applying computer-aided system to classifying 
colonic[29,30] and pancreat ic lesions[31–34] few work 
contributes to gastric premalignant lesions and neoplasia. 
Besides, most methods mentioned above were focused 
on differentiating, not detecting. Actually, real-time 
detecting need much stronger capacity of pattern 
recognition than differentiating, which may be far 
beyond the ability of traditional machine learning models 
based on k-NearestNeighbor (kNN) and Support Vector 
Machine (SVM). In this study, we constructed several 
models based on CNNs, the most powerful deep 
learning algorithms at present.[13] To achieve superior 
stability, reliability and accuracy, we trained a modified 
Faster R-CNN with a database of 13,738 endoscopic 
images (including 10,014 images for CAG detection and 
3724 images for GC detection), which is hundreds of 
times larger than that of previous studies.

Traditional algorithms usually demand for manual 
extraction of domain-specific visual features, followed 
by further ability of classifying. Therefore, their 
application may be greatly restricted for the disability of 
automatic discovery and locat ion of les ions.  
Additionally, since most of the precancerous lesions and 
early neoplasia are presented as subtle alteration of 
morphology and color of mucosa, they are quite difficult 
to be precisely detected only with WLI during 
examination even by some experts. Thus, we designed 
and implemented an automatic real-time lesion detector 
for CAG and GC, taking advantage of independent 
learning from little pre-processing sources by Faster R-
CNN.

CAG lesions often present as diffused mucosal changes, 
which makes it much more difficult to delineate the 
outline of the lesion than other diseases such as GC. 
Bounding boxes for annotating positive samples are 
placed in biopsy sites manually which usually only cover 
the most severe area of lesions. However, in training 
process, we further generated a group of candidate 
bounding boxes widely distributed in the whole image 
based on the ‘anchor rules’ mentioned in the previous 
study.[25] We then labelled them as positive/negative 
according to Intersection over Union (IoU) between the 
ground-truth boxes and each of them. After that, they 
were randomly selected and inputted for training. 
Subsequently, some candidate bounding boxes labeled 
negative may actually include sporadic atrophic lesions, 
leading to a small amount of noise in negative samples. 
Based on atypical characteristics and small percentage of 
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Figure 3. Comparison of performance between network and doctors in different levels in the CAG and GC test. (A) Comparison of diagnostic reliability 
between the best model and doctors in each level in the CAG test. There is significant difference in sensitivity between the network and doctors from Level 
I to Level IV (P < 0.001, χ2 = 31.226; P < 0.001, χ2 = 16.004; P < 0.001, χ2 = 13.820; P = 0.003, χ2 = 8.665, respectively). No significant difference in 
specificity is observed except Level II (P = 0.141, χ2 = 2.168; P = 0.034, χ2 = 4.500; P = 0.341, χ2 = 0.907; P = 0.841, χ2 = 0.040, respectively). As for 
accuracy, statistical difference is observed except Level III (P < 0.001, χ2 = 12.500; P = 0.002, χ2 = 9.584; P = 0.103, χ2 = 2.658; P = 0.071, χ2 = 3.267, 
respectively). (B) Comparison of diagnostic reliability between the best model and doctors in each level in the GC test. No significant difference in 
sensitivity is observed between the optimal network and doctors from Level I to Level IV (P = 0.285, χ2 = 1.143; P = 0.207, χ2 = 1.592; P = 1.000, χ2 = 
0.000; P = 0.506, χ2 = 0.442, respectively). There is statistical difference in specificity comparing the network and doctors in all the four levels (P = 0.006, 
χ2 = 7.490; P = 0.004, χ2 = 8.333; P = 0.001, χ2 = 11.171; P < 0.001, χ2 = 18.364, respectively). No significant difference in accuracy is observed except 
Level IV (P = 0.262, χ2 = 1.258; P = 0.262, χ2 = 1.258; P = 0.071, χ2 = 3.271; P = 0.030, χ2 = 4.700, respectively). NS: no statistical difference. **, 
statistical difference. CAG: chronic atrophic gastritis; GC: gastric cancer.

such noise, our network can adjust and converge itself to 
a relatively satisfactory condition after a long period of 
self-learning (Supplementary Video S1). Expert-level 
performance in CAG detection also proves strong ability 
to correctly distinguish positive samples from negative 
ones.

In GC detection, we enrolled both early and advanced 
GC diagnosed endoscopically together by two of the 
nine certified GI experts with or without pathological 
results in order to make full use of all data, which means 
the training set may include some over-diagnosed 
images, resulting in enhanced sensitivity and underes-
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timated specificity and accuracy of our network with a 
standard of histopathology in the test. A larger number 
of GC images with definite histopathological results 
would be greatly needed in training dataset to obtain a 
better network. Additionally, all images of EGC would 
be picked out to improve the detection rate of the most 
controversial but fatal cancerous lesions.

The primary motivation for designing a real-time 
computer-aided lesion detector in endoscopy is to assist 
young GI doctors in discovering and precisely locating 
gastric precursor lesions and neoplasia, especially EGCs. 
We further hope to diminish the false dismissal rate and 
misdiagnosis rate of EGC, as well as helping to direct 
specific biopsy sites. In real clinical environment, the 
readily processed network will be converted to a 
software, and integrated with endoscopic operating 
system. There is no need in altering endoscopic 
examination protocol nor hardware to use our system. 
All we need is WLI rather than any other advanced 
endoscopic equipment. After a long-term follow-up 
observation, the preconceived reduction in false 
dismissal rate and misdiagnosis rate of CAG, EGC and 
AGC (advanced GC) would be statistically calculated. 
The difference of overall medical cost per patient 
between the novel endoscopic diagnosis procedure and 
the conventional one will also be analyzed. Moreover, 
the system could also be used as an educational tool, 
speeding up the learning curve of endoscopic beginners.

For CAG detection, our network outperforms GI 
experts in sensitivity, specificity and accuracy. For GC 
detection, our network has a superior sensitivity but 
inferior specificity and accuracy than GI experts. In 
conclusion, we provided a deep learning based computa-
tional tool to improve the detection rate of CAG and 
GC, simplify diagnostic procedures and target following 
biopsy.
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