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ABSTRACT

Background: Eye gaze tracking and pupillometry are emerging topics in telerobotic surgery as it is believed that they will 
enable novel gaze-based interaction paradigms and provide insights into the user’s cognitive load (CL). Further, the 
successful integration of CL estimation into telerobotic systems is thought to catalyze the development of new human-
computer interfaces for personalized assistance and training processes. However, this field is in its infancy, and identifying 
reliable gaze and pupil-tracking solutions in robotic surgery is still an area of ongoing research and high uncertainty. 
Methods: Considering the potential benefits of pupillometry-based CL assessments in telerobotic surgery, we seek to better 
understand the possibilities and limitations of contemporary pupillometry-based cognitive effort estimation algorithms in 
telerobotic surgery. To this end, we conducted a user study using the da Vinci Research Kit (dVRK) and performed two 
experiments where participants were asked to perform a series of N-Back tests, either while (i) idling or (ii) performing a peg 
transfer task. We then compare four contemporary CL estimation methods based on direct analysis of pupil diameter in the 
spatial and frequency domains. Results: We find that some methods can detect the presence of cognitive effort in simple 
scenarios (e.g., when the user is not performing any manual task), they fail to differentiate the different levels of CL. Similarly, 
when the manual peg transfer task is added, the reliability of all models is compromised, highlighting the necessity of more 
robust methods that consider different factors that complement the pupil diameter information. Conclusion: Our results 
offer a quantitative perspective of the limitations of the current solutions and highlight the necessity of developing tailored 
designs for the telerobotic surgery environment.
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INTRODUCTION

Pupil diameter and gaze tracking are emerging research 

topics in computer-assisted interventions and telerobotic 
surgery. It is hypothesized that knowledge of gaze 
position and pupil dilation will open new avenues for 
research in different fields. For example, in developing 
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new intuitive human-computer interaction paradigms[1–3] 
and in skill assessment for the development of person-
alized learning experiences.[4–6] This is possible because 
eye-related metrics, like pupil diameter, gaze, and blink-
rate, are correlated to the level of cognitive load (CL) a 
user is experiencing in a given situation.[7–9]

CL theory was developed in 1988,[10,11] and has three 
main components: Sensory, working, and long-term 
memories.[10,11] Information flows from the sensory 
memory into the working memory, where it is 
processed. Then, the brain categorizes it and moves it 
into the long-term memory, where it is stored in 
knowledge structures called schemas. The more 
practiced those schemas, the more effortless that 
behavior becomes. CL relates to the amount of 
unfamiliar information the working memory is currently 
processing. When the CL exceeds the working memory 
capacity, it leads to mental fatigue and decreases learning 
speed.[12–14] In an optimal scenario, CL should be small 
for surgeons with high expertise while in an optimal 
learning point for surgeons in training.[15,16] From the 
telerobotic surgery perspective, advancing in eye-related 
CL estimation can allow the development of tools like 
safety assistance models able to effectively detect and 
track fatigue during surgery, and personalized surgical 
t ra ining programs for  an enhanced learning 
experience.[17,18]

CL presents a direct relationship with the pupil diameter, 
which has led to the development of methods based on 
this metric.[8] They have been used is learning 
experiences,[19] a n d  c o m p l e x  d e c i s i o n - m a k i n g  
scenarios,[20] among other studies. However, approaches 
that make a direct use of the diameter are sensitive to 
illumination changes, and hence their application to 
unconstrained environment is limited. Multiple 
challenges arise in unconstrained environments. For 
instance, the changes in pupil diameter due to light 
variations is an order of magnitude larger than the 
response triggered by CL.[21,22] Additionally, the pupil has 
a maximum diameter from which it can no longer dilate, 
meaning the same source of CL can produce different 
changes in the diameter. Furthermore, since each 
person’s mental capacity and basal pupil diameter differ, 
the same act iv i t ies  can tr igger different CL 
responses.[22,23]

Recent studies have proposed ways to overcome these 
limitations and propose to perform the analysis of the 
diameter in the spectral domain.[24,25] These works 
hypothesize that such analysis can separate changes due 
to reactions to light from changes related to effortful 
cognitive processes. These methods are based on the 
knowledge that changes in CL are related to high-
frequency variations, while low-frequency changes are 
responses to luminescence. Additionally, they have been 

applied to comprehension studies,[26] direct and gradual 
video-speed adjustments for learning,[19] color visual 
short-term memory tasks,[27] among others.  Considering 
the success of both pupil diameter-based and frequency 
analysis methods. This paradigm brings promising 
applicability to telerobotic surgery, however their current 
performance in this task has yet to be fully explored.

Contributions
Motivated by the recent advances in CL estimation, and 
their applications in telerobotic surgery, we evaluate a set 
of state-of-the-art models for CL estimation under a 
telerobotic environment. To this end, we perform a user 
study on the da Vinci Research Kit (dVRK)[28] where the 
participants are asked to perform a visual-manual task at 
the time they solve an auditive N-Back task to trigger 
different CL levels. Our results offer a quantitative 
perspective of the limitations of the current solutions 
and highlight the necessity of developing tailored designs 
for the telerobotic surgery environment.

MATERIAL AND METHODS

We compared four methods for CL estimation based on 
the analysis of the pupil diameter. In this section, we 
introduce the main ideas of each method and describe 
the data collection protocol employed to obtain pupil 
signals under different levels of CL.

Eye-tracker and pupillometry-based cognitive 
effort estimation
CL estimation has been of great interest in human center 
design, as it defines non-observable internal factors 
related to the user experience when performing a task. 
Different physiological measures like heart rate 
variability, electrodermal activity, pupil diameter, and 
blink rate reveal information about user’s CL. However, 
attending the necessities of users and use cases, CL 
estimation methods should not interfere with the natural 
workflow. Under this condit ion, eye-tracking 
measurements offer solution for non-invasive CL 
assessment, and hence, most of the methods employ 
eye-tracker information to quantify CL.

Pupil diameter has been a standard measurement to 
est imate CL, given i ts  correlat ion with task 
difficulty.[9,24,25] Previous works show that complex 
problems cause an increment in pupil diameter 
motivating models that employ this fact to determine CL 
by comparing current measurements with a baseline 
diameter (basal diameter). The basal diameter describes 
the natural behavior of the pupil, and it is acquired 
during a baseline task performed independently (inter-
trial change in pupil diameter called BCPD), or at the 
beginning of each step of the main task (intra-trial 
change in pupil diameter called CPD).[9] Both changes 
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can be defined as:

Where k starts at 0 and increases in steps of 1 during the 

temporal range CPD or BCPD is evaluated, t ∈ [0, Te] 

represents the temporal range of the trial, and μTb is the 

mean diameter obtained during the baseline trial.  
represents the pupil signal after applying a Butterworth 
filter.[9,29] Both CPD and BCPD represent the change in 
pupil diameter, which can be positive or negative and are 
presented as unitless in the paper.[9,29] These methods can 
reveal evidence of CL and have the advantage of being 
easy to implement. However, given their complete 
dependence on the raw pupil  diameter their  
performance can be affected by changes in the lighting 
conditions.

Analysis in the spectral domain
To address these limitations, a second group of methods 
considers the fluctuations in the pupil diameter during 
the trial and perform an analysis of the rate of change of 
the diameter over time. Changes in CL are related to 
high-frequency variations, while low-frequency changes 
are responses to luminescence. Methods like the index 
of cognitive activity (ICA) analyze the rate of change in 
the pupil signal instead of directly comparing the pupil 
diameter with a baseline. According to Duchowski et al., 
the ICA can separate light-related reflexes from CL-
related responses (dilation reflex).[24] Even though the 
details of the implementation of ICA are not available, 
the authors propose an alternative measure based on the 
ratio of high-frequency responses of the pupil signal 
named the index of pupillary activity (IPA) and based on 
the wavelet decomposition of the pupil signal, and is 
presented as a unitless metric.[24] IPA performs a hard 
thresholding to filter the wavelet coefficients and 
analyses the remaining using the frequency of the count 
of coefficients per second. CL is quantified according to 
the number of counts, as they are directly proportional 
to the effort. The method was evaluated with 13 
participants performing easy, difficult, and control tasks 
consisting of number-counting trials. Participants wore 
eye trackers with their heads stabilized by a chin rest in a 
room with limited ambient light. Even though the paper 
shows the sensibility of IPA to changes in CL, the 
constrained experimental environment is a factor to 
consider when applying the method to a different 
domain. Additionally, IPA might fail when estimating 
CL induced by the N-Back test, even when the gaze is 
fixed at a specific location.[25]

Duchowski et al. also proposed the Low/High Index of 
Pupillary Activity (LHIPA) to overcome the limitations 

of IPA. Instead of taking the maxima of the frequency 
signal, LHIPA takes the ratio between low and high 
frequency bands.[25] The high-frequency response is 
expected to increase under high CL, and hence, LHIPA 
will decrease under the presence of CL. LHIPA is also 
presented as a unitless metric. To test LHIPA, 
participants were asked to perform number counting, N-
Back, and a modified text-copy tasks. The first task was 
performed with a fixed gaze, the N-Back was performed 
by fixing the gaze point at one of five positions on the 
screen, and the third problem required an unrestricted 
environment. Experiments were more complex than the 
presented by IPA, the users could change the position of 
the gaze point in a controlled or unrestricted way, 
allowing for more realistic use cases. The room’s 
illumination during the experiments was kept reduced 
and constant.

In-house dataset for cognit ive effort 
evaluation in telerobotic surgery
We defined a data collection protocol to record pupil 
information of users while performing manual and 

auditive tasks with the dVRK.[28] Users were asked to 

perform a teleoperated peg transfer and an auditory N-
Back tasks (Table 1).  We collected pupil information 

from 18 participants, which all were graduate computer 

science students from the Johns Hopkins University with 

basic knowledge about the dVRK. The participants were 

divided in two groups as follows: (i) 13 users performed 

peg transfer and N-Back tasks simultaneously, and (ii) 5 

users performed the N-Back tasks without peg transfer. 
The first group replicates a real surgical scenario, where 

the surgeon is performing the handling of the robot arms 

with additional cognitive tasks like communication with 

its team and evaluating the next steps of the surgery. The 

second group enables us to assess the effect on each CL-
detection method of performing multiple tasks.  Data was 

collected using the Pupil Labs Invisible frame with 

adapted camera mounts (Figure 1) under an approved 

protocol (HIRB00014648). Personalized mounts were 

needed due to the angle of the head inside the dVRK that 
did not allow accurate tracking of the Pupil Labs Core 

headset.

Users are first introduced to the basic use of the dVRK, 
followed by a practice session to get familiar with the 
device. No recording is performed during this first step. 
After this training session, users are introduced to the 
protocols. Once all the introductory information is 
completed, the users are asked to wear the eye tracker 
and perform an eyeball and gaze calibration (see section 
Calibration). Then, they are asked to start the peg transfer 
task or to fix the gaze at a central point of the console, 
according to the group. This task continues during the 
whole study. Details are described below.
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Calibration
We perform two kinds of calibrations. Before running 
the experiments, users perform an eyeball calibration[30] 
employing the eye-trackers’ software (Pupil Capture 
3.5.8). The process requires the users to fix the gaze in a 
point of the scene and move the head in circles while 
keeping the gaze fixed.

The second calibration aims to define a gaze model. In 
contrast with eyeball calibration, gaze calibration is 
repeated several times during the experiment. The 
calibration is based on the single point active alignment 
method (SPAAM), as shown in Figure 2.[31] In this 
method, a target is sequentially presented at nine 
different positions, and users are asked to fix the gaze at 
each position of the sequence.

N-Back test
The N-Back test consists of a random sequence of ten 
numbers read to the users. The task is to repeat the 
number in the sequence read N steps before the current 
digit. Table 1 introduces an example of the N-Back test 
for different values of N. The task requires the user to 
remember a portion of the sequence, while at the same 
time memorize new information. It has been showed 
this exercise triggers different levels of CL relative to the 
value of N.[32]

Data collection protocol
We employed two protocols to acquire data. The first 
protocol follows an initial eyeball calibration and 
introduction to the tasks. After this introduction, the 
user enters the telerobotic surgery console. After a dead-
time period (no task is performed), we included two 
sequences of gaze calibration followed by an N-Back 
block. The N-Back block of the first sequence is 
composed of two dead-time separated by a 1-Back test. 
The second sequence’s N-Back block contains up to 
three dead-time periods separated by a 1-, 2-, or 3-Back 
test. No additional tasks are performed, and users are 
suggested to fix their gaze at the center of the screen.

The second protocol follows a less constrained 
environment that combines N-Back tasks with 
continuous peg transfer. After the introduction and an 
initial eyeball and gaze calibrations, the users enter the 
dVRK console and start performing a simple peg 
transfer task (Figure 3). At minutes 2, 6, 10, and 14 of 
the experiment, peg transfer is interrupted and the 
SPAAM calibration is re-run to ensure an appropriate 
gaze calibration is available before every N-Back test. At 
minutes 8, 13, and 16 of the procedure, an auditory N-
Back period is initiated. The peg transfer task continues 
even during the N-Back tasks. Each N-Back period is 
composed of two or three blocks of dead-time zone, 
followed by a randomly selected N-Back test.

Table 1: Examples of an N-Back recall task for N ∈ {0, 1, 
2, 3}

Type of experiment Sequence of numbers

Read 9 2 3 8 4 7 3 4 5 2 9 3 5 1 3

Recall

    0-Back 9 2 3 8 4 7 3 4 5 2 9 3 5 1 3

    1-Back - 9 2 3 8 4 7 3 4 5 2 9 3 5 1 

    2-Back - - 9 2 3 8 4 7 3 4 5 2 9 3 5

    3-Back - - - 9 2 3 8 4 7 3 4 5 2 9 3

Participants must recall the number that was said N positions in the past. “-” 

indicates the user does not repeat a number in that moment of the 

experiment.

Figure 1. The Pupil Labs Invisible frame with personalized eye camera 
mounts. The camera mounts shape and orientation were designed 
considering the orientation of user’s head and eyes in the dVRK console. 
dVRK, da Vinci Research Kit.

Figure 2. The nine positions of the target during the SPAAM gaze 
calibration. During the calibration, users observe each marker position for 
30 seconds. Note that only one marker is displayed at the dVKR screen at a 
time. SPAAM, single point active alignment; dVKR, da Vinci Research 
Kit.

For both protocols, the ability of the methods to detect 
CL is evaluated for the N-Back periods. Pupillometry 
information, such as pupil diameter and gaze calibration 
are obtained using the Pupil Labs software, Pupil 
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Figure 3. (a) The dVRK console with a user observing the gaze calibration routines (as displayed in the two upper monitors). (b) Detail of the peg transfer 
tasks, where users are asked to move the green and orange objects across the transfer plate. Once the peg transfer task starts, it continues during the entire 
experiment. dVRK, da Vinci Research Kit.

Capture 3.5.8 and Pupil Player version 3.5.7.

Data preprocessing
High confidence pupil diameter was obtained using 
Pupil Player version 3.5.7. Points detected with 
confidence lower than 0.9 were treated as outliers. Blinks 
were detected based on a slope detection approach, non-
blink outliers were detected based on the standard 
deviation and mean pupil diameter of a 0.1 s window (12 
data points). Both blinking regions and outliers were 
linearly interpolated between two high confidence zones. 
Finally, for CPD, BDPC and direct pupil diameter (PD) 
evaluation the signal was processed with a Butterworth 
filter with cutoff frequency of 12 Hz and an average 
filter over a 12 second window to reduce the noise of 
the pupil diameter signal.[29,33,34]

For the CPD algorithm, the first dead-time zone of each 
N-Back test was used as baseline. Remaining dead-time 
zones along each experiment were considered as regions 
without CL. For BCPD, the dead-time before the first 
N-Back experiment was used as the basel ine 
measurement, and all the remaining of the test were 
considered as regions without CL.

RESULTS

We compare IPA,[24] LHIPA,[25] CPD,[9] and BCPD,[9] in 
addition to the direct PD as reference metric, as single 
diameter changes can be influenced by the CL level. 
Except for LHIPA, all metrics should increase together 
with the level of CL.

Table 2 and Table 3 show the average and standard 
deviation of the metrics under different N-Back levels, 
with and without peg transfer, respectively. We also 
evaluated the algorithms in neural zones (dead times), 
where no N-Back test was performed.

DISCUSSION

Pupil diameter metrics
N-Back only
From Table 2, we can observe that diameter-based 
metrics act close to their expected behavior for the N-
Back-only protocol. Both metrics increment their output 
during the N-Back tasks. For the 1-Back and 2-Back 
experiments, these metrics reveal a consistent increment 
in their average corresponding to the N-Back level. This 
output is expected, as increasing the N-Back task will 
also increase the triggered CL. However, for the 3-Back 
test, we observed a reduction in the values of both 
metrics. This may derive from the level of difficulty of 
the N-Back task, which can cause an overload on the 
users, decreasing their CL response.[25]

Peg transfer with N-Back
Moving our attention to Table 3, the results for BCPD 
and CPD are less consistent with the theory. CPD values 
do not reveal enough information to suggest the 
presence of CL during the N-Back tests, and, in many 
cases, reveal smaller values compared with the neutral 
zone. BCPD average values are bigger for the N-Back 
tests than the neutral zone, showing a tendency to detect 
regions with CL. However, values between N-Back tests 
are not consistently increasing with difficulty. In general, 
it is possible that the addition of peg transfer adds 
additional challenges to the methods. Eye movement is 
unconstrained, and it is possible that as users engage in 
the task, their eye movements become more erratic and 
less predictable. Additionally, the light entering the eyes 
might have a focal component, and users may 
experience variations in focal brightness as they focus on 
different areas while grabbing and moving the peg, 
causing changes to the pupil diameter unrelated to the 
N-Back test. Unrestricted movements might cause 
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Table 2: Comparison of cognitive load algorithms on users performing N-Back experiments without the peg transfer 
task

Method Neutral 1-Back 2-Back 3-Back

LHIPA (↓) 7.220 ± 2.200 6.846 ± 1.985 6.670 ± 1.709 7.257 ± 2.166

IPA (↑) 1.920 ± 0.495 1.942 ± 0.441 1.940 ± 0.460 1.902 ± 0.540

CPD (↑) 0.117 ± 0.570 0.283 ± 0.398 0.706 ± 0.380 0.456 ± 0.238

BCPD (↑) -0.049 ± 0.323 0.144 ± 0.312 0.633 ± 0.463 0.395 ± 0.316

PD (mm) (↑) 3.756 ± 0.753 4.028 ± 0.698 4.650 ± 0.338 4.200 ± 0.776

LHIPA, Low/High Index of Pupillary Activity; IPA, index of pupillary activity; CPD, intra-trial change in pupil diameter; BCPD, inter-trial change in pupil 

diameter; PD, pupil diameter; ↓Value is expected to decrease with cognitive effort, ↑ Value is expected to increase with cognitive effort.

Table 3: Comparison of cognitive load algorithms on users performing N-Back experiments and peg transfer task

Method Neutral 0-Back 1-Back 2-Back 3-Back

LHIPA (↓) 7.314 ± 2.177 7.092 ± 2.038 7.475 ± 2.268 7.694 ± 2.319 6.924 ± 1.965

IPA (↑) 1.817 ± 0.655 1.818 ± 0.677 1.617 ± 0.864 1.647 ± 0.842 1.832 ± 0.608

CPD (↑) 0.115 ± 0.259 0.147 ± 0.257 0.019 ± 0.544 0.096 ± 0.313 0.142 ± 0.309

BCPD (↑) -0.086 ± 0.327 -0.024 ± 0.414 0.037 ± 0.514 0.017 ± 0.371 0.039 ± 0.322

PD (mm) (↑) 4.055 ± 0.999 4.489 ± 0.980 4.04 ± 1.173 4.077 ± 0.909 4.138 ± 1.048

LHIPA, Low/High Index of Pupillary Activity; IPA, index of pupillary activity; CPD, intra-trial change in pupil diameter; BCPD, inter-trial change in pupil 

diameter; PD, pupil diameter; ↓ Value is expected to decrease with cognitive effort; ↑ Value is expected to increase with cognitive effort.

additional noise to the eye tracker, and the focal 
brightness will affect the relative changes of the pupil 
since both BCPD and CPD do not account for changes 
in the incident light.

To evaluate the differences in eye movements between 
tasks with and without peg transfer, the Shannon gaze 
entropy is computed. The field of view is divided into 
nine areas of interest for analysis.[35] Figure 4b illustrates 
that the entropy is higher when performing the peg 
transfer task, indicating a more extensively eye 
movement across the field of view, resulting in a higher 
dispersion of gaze.[36] This dispersion correlates with the 
higher variation of the focal brightness, as show in 
Figure 4a highlighting the relevance of considering the 
focal component for pupil-based methods.

Frequency based methods
N-Back only
LHIPA presents overall lower values during the N-Back 
tests compared with the neutral task, suggesting the 
model can detect CL regions. However, we can also 
observe no pattern related to the levels of task difficulty. 
In contrast, IPA did not distinguish between neutral and 
CL steps, behaving inconsistently with their expected 
values. This behavior, however, aligns with Duchowski et 
al., that mention IPA can fail when applied to N-Back 
tasks.[25]

Peg transfer with N-Back
Overall, the performance of the frequency-based 

methods when peg transfer is included (Table 3) does 
not present a clear pattern that could allow distinguish 
the presence of CL. The IPA presents inconsistent 
values, decreasing with higher levels of CL. LHIPA 
outputs also behave contrary to their expected value for 
the 1-Back and 2-Back tests. As discussed before, it is 
possible that the eye and head movements introduce 
additional noise to the signal negatively affecting the 
performance of these methods.

Final remarks
We evaluated the performance of four recent CL 

estimation methods on a telerobotic-surgical-like task 

with the dVRK. We induce CL by employing an auditive 

N-Back task, performing experiments when the N-Back 

task  is  combined  with  peg  transfer.  The  task  is  

unrestricted in the sense that the hand-eye coordination 

of the peg transfer task requires the user to focus on 

different regions of the screen.

Overall, while some metrics like LHIPA or BCPD allow 
identifying potential changes in CL, none of the metrics 
can be directly employed to assess the level of CL a user 
is experiencing. CL indices perform according to their 
underlying theory in some cases and fail in others, even 
if the induced CL is high. This behavior might result 
from not returning to the basal pupil diameter between 
N-Backs due to the multiple tasks being performed (e.g., 
peg transfer, calibration, and N-Back). While frequency-
based metrics are expected to be light insensitive, the 
results suggest that they fail to assess the presence of CL 
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Figure 4. Lighting variations and entropy comparison between users performing N-Back task with and without peg transfer. (a) Dispersion of focal 
brightness without PT task and with PT task. (b) Gaze-entropy without peg transfer task and with peg transfer task. PT, peg transfer.

properly when peg transfer is combined with N-Back 
tests. It is possible that the movements that the users 
perform in the telerobotic console introduce additional 
noise to the pupil signal,  which affects their 
performance, mainly for IPA, as previously reported.[25]

It is interesting to observe that the models based on the 
evaluation of pupil diameter, like BCPD, seem like a 
promising option to detect the potential presence of CL. 
However, their sensitivity to light and free movement of 
the eye, as mentioned by Krejtz et al.[9] is a factor to 
consider, especially in the surgical environment, where 
the specularities, the presence of tools, and smoke can 
lead to different changes in the focal brightness, leading 
to a larger range of pupil diameters. It is possible that 
including light models that consider the measured focal 
brightness based on gaze information could help 
minimize the effects of light.

As none of the evaluated methods success in giving 
information about the levels of CL, it is necessary to 
analyze the diverse factors that affect pupil diameter and 
the available complementary information (e .g . ,  
brightness, gaze and blink) in the definitions of future 
models that allows predicting the presence and level of 
CL.
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