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ABSTRACT 

Endoscope is an important tool for the diagnosis and treatment of gastrointestinal 

diseases. With the development of artificial intelligence (AI), especially deep learning 

(DL) technology, more and more endoscopic AI systems are being studied for the 

detection and diagnosis of gastrointestinal diseases. The literature shows that AI has 

many applications in clinical practice, and shows great potential in improving 

detection accuracy, efficiency, and adenoma detection rate. In this review, we 

introduce the current application of AI technology in gastrointestinal endoscopy in the 

esophagus, stomach and colorectum, and sort out the AI systems that successfully 

obtained the regular approval. Finally, we discuss the opportunities and challenges of 

the AI-based endoscopic system in clinical applications, and provide insights into the 

future. 
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INTRODUCTION 

 

Gastrointestinal (GI) disease is one of the most common diseases that affects human 

health seriously. The emergence of GI endoscopy opens a new era in the diagnosis 

and treatment of digestive tract diseases.[1] Doctors can directly observe various 

diseases of the digestive cavity, and take biopsy for pathological examination with the 

help of GI endoscope.  

In recent years, artificial intelligence (AI), with its unique advantages, has made 

important breakthroughs in the application of medicine, which has attracted 

widespread attention.[2] AI-assisted GI endoscopy has also become a research 

hotspot.[3-5] Traditional machine learning approaches like support vector machine 

(SVM) needs to extract features manually (such as color and anatomical grain), which 

can easily cause related features to be incomplete, thereby reducing the accuracy.[6] 

And they require experts to preset parameters, which may lead to inefficient. Driven 

by big data and high-performance computers, deep learning (DL) extracts image 

features through a multi-layer neural network automatically.[7] Convolutional neural 

network (CNN) is a deep feedforward neural network that has been developed in 

recent years, which is particularly well-suited to computer vision problems.[8] 

Recently, given the breakthrough of transformer in image analysis, transformer-based 

approaches have also been gradually applied to GI endoscopy analysis.[9] 

The tasks of AI in image analysis mainly include classification, detection and 

segmentation.[10] In specific clinical applications, most endoscope AI systems are 

defined as computer-aided detection (CADe) and diagnosis (CADx).[11] They mainly 

focuse on the identification of early cancer and precancerous lesions of the GI tract, 

such as the identification of early cancers in esophagus and stomach, and the detection 

of colon polyps.[12] Based on the mucosal surface glandular duct opening and 

neovascularization status of these lesions, combined with endoscopic image 

parameters such as high definition white light imaging (WLI) endoscopy, 



narrow-band imaging (NBI) technology, and magnified endoscopy, several AI 

systems for identifying early cancers of the GI tract have been published in major 

academic journals.[13-14 ] 

Endoscopy AI Challenge has also been held over the years.[15] According to the actual 

clinical requirements of GI endoscopy, the sponsor constructed corresponding 

scenarios, proposed AI analysis tasks, and provided high-quality datasets and 

annotations. The challengers from various countries actively participated and put 

forward various solutions, which achieved satisfying results. EAD2019, for example, 

provides a multicenter, multimodal endoscopy dataset for detecting artifacts generated 

during endoscopic surgery.[16] EDD2020 aims to assess localization of disease regions 

using bounding boxes and exact pixel-level segmentation. Because clinical 

applicability by assessing real-time monitoring and offline performance evaluations of 

algorithms for improved accuracy and better quantitative reporting is required 

today.[17] These challenges, to some extent, promote the application of AI in digestive 

endoscopy analysis.   

We performed a systematic research for original publications on the subject of AI in 

the field of GI endoscopy, and classified them by different parts. At the same time, we 

counted the AI endoscopy products that had been approved. The purpose is to 

summarize the current situation and future perspectives of AI in both research and 

clinical practice of GI endoscopy. 

 

CURRECT STATUS OF AI IN GI ENDOSCOPY 

Esophagus 

Esophageal cancer is one of the most common malignant tumors of the upper GI tract, 

ranking seventh in the incidence and sixth among the death of malignant tumors 

worldwide.[18] Most patients have reached the moderate or advanced stages of cancer 

when they go to the hospital. Endoscopic treatment of early esophageal cancer and 

precancerous lesions can achieve a cure rate of more than 90%, which can 

significantly improve the prognosis of patients. 



It is difficult to detect Barrett’s neoplasia and superficial esophageal squamous cell 

carcinoma (SCC), because that early lesions have subtle visual changes on 

endoscopy.[19] AI can help to aid in esophageal cancer detection and diagnosis. Table 1 

shows the studies that AI applied in the field of esophagus. Van der Sommen et al.[20] 

used SVM to identify early neoplastic lesions on a per-patient basis with 86% 

sensitivity and 87% specificity. It was first reported for early neoplastic lesions. 

Additionally, more and more studies[21-24] have reported on Barrett’s neoplasia with 

DL methods. For example, Hashimoto R et al.[25] reported that they used 1374 images 

to train CNN model. It could detect the Barrett’s neoplasia with 96.4% sensitivity, 

94.2% specificity, and 95.4% accuracy. Additionally, Ebigbo A et al.[26] developed a 

CNN-based model for th prediction of submucosal invasion in Barrett’s cancer with 

77% sensitivity, 64% specificity, and 74% diagnostic accuracy. Several studies have 

also reported on Esophageal SCC.[27-29] Cai SL et al.[29] collected 746 patients and 

developed a CNN-based model with 97.8% sensitivity, 85.4 % specificity, and 91.4% 

diagnostic accuracy. Guo et al.[30] trained CNN models for real-time automated 

detection of SCC via NBI with 98.0% sensitivity and 95.0% specificity. 

Table 1. Summary of AI applied in the field of esophagus  

Ref Publi
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design 
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ts 

Type 

of AI 
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ty 
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y 

van der 

Somme

n F[20] 

2016 Barrett’s 

esophagu

s 

Retrosp

ective 

44 

patients 

S

V

M 

WLI 86 87  

Sehgal 

V,[21] 

2018 Barrett’s 

esophagu

s 

Retrosp

ective 

40 

patients 

De

cis

io

n 

tre

es 

WLI 97 88 92 



Groof 

JD[22] 

2019 Barrett’s 

esophagu

s 

Retrosp

ective 

60 

patients 

S

V

M 

WLI 95 85 91.7 

Horie 

Y,[28] 

2019 outcomes 

of 

esophage

al cancer 

Retrosp

ective 

384 

patients 

C

N

N 

WLI/

NBI 

98  98 

Cai 

SL[29] 

2019 early 

esophage

al 

squamou

s cell 

carcinom

a 

Retrosp

ective 

746 

patients 

C

N

N 

WLI 97.8 85.4 91.4 

Kumag

ai Y[31] 

2019 esophagu

s 

Retrosp

ective 

240 

patients 

C

N

N 

WLI 92.6 89.3  

Groof 

AJ[24] 

2020 Barrett’s 

esophagu

s 

Retrosp

ective 

669 

patients 

C

N

N 

WLI 90 88 89 

Groof 

AJ[23] 

2020 Barrett’s 

esophagu

s 

Retrosp

ective 

689 

patients 

C

N

N 

WLI 91 89 90 

Ebigbo 

A[25] 

2020 Barrett’s 

oesophag

us 

Retrosp

ective 

129 

patients 

C

N

N 

WLI 83.7 100 89.9 

Ebigbo 

A[26] 

2020 Barrett’s 

cancer 

Retrosp

ective 

230 

patients 

C

N

WLI 77 64 71 



N 

Hashim

oto R[27] 

2020 Barrett’s 

esophagu

s 

Retrosp

ective 

1374 

images 

C

N

N 

WLI 96.4 94.2 95.4 

Guo 

L[30] 

2020 Early 

esophage

al 

squamou

s 

cellcarcin

oma 

Retrosp

ective 

549 

patients 

C

N

N 

NBI 98 95  

Tokai 

Y[32] 

2020 esophage

al 

squamou

s cell 

carcinom

a 

Retrosp

ective 

1751 

images 

C

N

N 

WLI/

NBI 

84.1 73.3 80.9 

Wang, 

Y. K.[33] 

2021 esophage

al 

neoplasm

s 

Retrosp

ective 

936 

images 

C

N

N 

WLI/

NBI 

92.6 70.4 90.9 

 

Stomach 

Gastric cancer has a high incidence and poor prognosis all over the world. Research 

data indicate that in 2018, there were about 1,033,000 new cases and 783,000 deaths 

of gastric cancer worldwide.[18] The 5-year survival rate of patients with early 

diagnosis of gastric cancer can reach more than 90%, and studies have found that the 

false negative rate of traditional GI endoscopy screening for early cancer can reach 

4.6%-25.8%. 



Helicobacter pylori infection is an independent risk factor for gastric cancer. Table 2 

shows the researches of AI used in the field of stomach. Several studies[34-36] have 

reported on Helicobacter pylori infection. Shichijo et al.[34] collected 1768 patients 

and developed a CNN-based model for the prediction of H. pylori gastritis. The 

sensitivity, specificity, and accuracy for diagnosing H. pylori infection were 88.9%, 

87.4%, and 87.7%, respectively. Nakashima et al.[36] used the training images of WLI, 

blue laser imaging (BLI), and linked color imaging (LCI) from 162 patients for 

diagnosing H. pylori infection with 96.7% sensitivity and 86.7% specificity. Besides, 

there are also several studies[37-38] are reported for gastric cancer. Wu L et al.[39] 

reported that they used 9151 images to train CNN model. It could detect the gastric 

cancer with 94.0% sensitivity, 91.0% specificity, and 92.5% accuracy. 

Table 2. Summary of AI applied in the field of stomach 
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Shich

ijo 

S[34] 

2017 Helicob

acter 

pylori 

infectio

n 

Retros

pective 

1768 

patient

s 

CNN WLI 88.9  87.4  87.7 

Itoh 

T [35] 

2018 Helicob

acter 

pylori 

infectio

n 

Retros

pective 

149 

patient

s 

CNN WLI 86.7 86.7  

Naka

shim

a 

2018 Helicob

acter  

pylori 

Retros

pective 

162 

patient

s 

CNN WLI\B

LI\CLI 

96.7 86.7  



H[36] infectio

n 

Zhen

g 

W[40] 

2019 Helicob

acter  

pylori 

infectio

n 

Retros

pective 

1507 

images 

CNN WLI 81.4 90.1 84.5 

Hiras

awa 

T[37] 

2018 gastric 

cancer 

Retros

pective 

2639 

lesions 

CNN WLI 98  98 

Wu L 

[39] 

2019 gastric 

cancer 

Retros

pective 

9151 

images 

CNN WLI 94.0 91.0 92.5 

Cho 

BJ[38] 

2020 gastric 

cancer 

Retros

pective 

1066 

patient

s 

CNN WLI   84.6 

Wu, 

L[41] 

2021 gastric 

cancer 

Retros

pective 

37 

EGCs 

and 63 

noncan

cerous 

lesions 

CNN WLI/N

BI 

  87.8

1 

Zhao 

X[42] 

2021 Gastroi

ntestina

l tract 

location 

classific

ation 

 113 

videos 

Transf

ormer 

WLI   94.5 

 

Colorectum 



Colorectal cancer is one of the malignant tumors with the highest incidence and 

mortality in the world. In recent years, the incidence of colorectal cancer has shown 

an upward trend. Regular colonoscopy can effectively reduce the incidence and 

mortality.[43] Colon polyp detection using AI has always been an interesting 

application scenario for researchers. 

The primary role of the CADe system is to help doctors reduce the missed diagnosis 

of polyps, thereby reducing ADRs, and it has been verified in multiple prospective 

clinical studies.[44] Misawa et al.[45] built a real-time CADe system through CNN, 

using 135 videos to evaluate the detection ability. The sensitivity, specificity, and 

accuracy for the frame-based analysis, were 90.0%, 63.3%, and 76.5%, respectively. 

Yamada et al.[46] developed a real-time CADe model based on CNN for the early 

automatic detection of colorectal tumors, including polypoid and non-polypoid lesions. 

The sensitivity of the model for detecting lesions is 97.3%, and the specificity is 

99.0%. 

In the CADx system, AI is mainly used to identify the characteristics of polyps. AI 

has been applied to the endoscopic diagnosis of many optical modalities such as WLI, 

LCI, autofluorescence endoscope, M-NBI, magnifying endoscope and so on.[47] 

Sánchez-Montes et al.[48] constructed a CADx system that used SVM for automated 

optical diagnosis and achieved high diagnostic abilities with 92.3% sensitivity, 89.2% 

specificity, and 91.1% accuracy. Chen et al.[49] designed a DNN CAD system to 

characterize diminutive polyps using NBI with optical magnification. They compared 

the polyp’s characterization between the NBI based CADx and novel and expert 

endoscopists. AI was faster (0.45 ± 0.07 sec) than experts (1.54 ± 1.30 sec) and novel 

endoscopists (1.77 ± 1.37 sec). It correctly classified the neoplastic histology with 

96.3% sensitivity and 78.1% specificity. The accuracy was 90.1%. The system was 

able to better characterize the polyps than novel endoscopists and was comparable to 

the experts. 

In addition, AI has other applications in colonoscopy, such as the detection of 

inflammatory bowel disease. Gottlieb et al.[50] collected 947 full endoscopic videos of 

249 patients from 14 countries, with a total of 19.5 million images. The study found 



that DL algorithms can be trained to predict the severity of ulcerative colitis (UC). In 

this study, using video rather than still images, it was found that DL algorithms could 

be trained to predict the severity of ulcerative UC, and that the performance of AI 

algorithms met or exceeded previously published indicator for the severity of UC 

score.  Maeda et al.[51] developed and evaluated a CAD system that uses endoscopy 

to predict histological inflammation. It obtained data on 187 UC patients who 

received biopsy samples after endoscopy, including six colorectal sites from the 

cecum, ascending colon, transverse colon, descending colon, sigmoid colon and 

rectum. Endoscopic images and biopsy samples of each patient were collected, and all 

endoscopic images were labeled with reference to the histological activity of biopsy 

samples. A total of 12900 endoscopic images from 87 patients were used for training 

to construct CAD, and 525 independent segments from the remaining 100 patients 

were collected for validation. The main evaluation of the CAD system was the ability 

to predict histological inflammation. The results showed that the accuracy of CAD 

system was up to 91.0%, and it could completely automatically identify persistent 

histological inflammation associated with UC. 

 

Other Field 

Capsule endoscopy is a safe, non-invasive, and highly accepted diagnosis tool for GI 

diseases. Because of a large amount of video data, capsule endoscopy is an ideal field 

for AI research, which can help doctors identify different lesions and regions of 

interest.[52] As newer generations of high-definition capsules emerge, richer data are 

available for training a CNN to detect masses or sources of occult bleeding. Leenhardt 

et al.[53] developed a CNN to detect GI angioectasias in the small bowel. This model 

is proved to have 100% sensitivity for detecting angioectasias, with a specificity of 

96%. This approach assesses a full-length study in 39 min. Lui et al.[54] obtained data 

from 439 capsule videos and trained a CNN model to identify multiple types of 

lesions and their positions on the capsule endoscopic images. The model recognizes 

arteriovenous malformations, erythema, varicose veins, swelling, masses, ulcers, 

erosions, blood, red villi, diverticula, polyps and xanthomas with an accuracy rate of 



97%. Aoki et al.[55] developed an AI diagnosis system for the diagnosis of erosions 

and ulcers in capsule endoscopy. The system used 5,360 images of erosion and ulcers 

for deep CNN training and tested on 10,440 small intestine endoscopic images. The 

test was completed in 233 seconds, and the area under the receiver operating 

characteristic curve for the diagnosis of erosion and ulcer was 0.958. The sensitivity, 

specificity and accuracy were 88.2%, 90.9% and 90.8%, respectively. 

The binocular endoscope has the features of three-dimensional (3D) imaging and 

measurement, which can provide depth information to assist endoscopists operate the 

endoscope more accurately, efficiently and safely.[56] Traditional binocular matching 

algorithms such as semi-global block matching algorithm (SGBM), for the texture 

less and high gloss endoscopic images, will generate disparity maps with holes and 

mismatch problems. Researchers began to explore binocular disparity prediction 

based on DL. Some proposed models, such as MCCNN, GC-Net, GA-Net, can 

effectively improve the accuracy of disparity prediction in the above-mentioned 

difficult areas.[57] In addition, binocular reconstruction will also spend a lot of time for 

left and right images matching. For this reason, many monocular endoscopic AI 

models are put forward for real-time 3D reconstruction and measurement of the GI 

tract.[58] 

 

FRONTIER RESEARCH 

There are still many new types of endoscopes used in clinical practice, including 

endocytoscopy (EC), endoscopic ultrasound (EUS), electronic choledochoscope. AI 

technology is also used in image analysis of these endoscopes. Compared with 

traditional endoscopes, the application of AI technology is still a cutting-edge research 

because of the small amount of dataset and the complicated structure of the observed 

objects of these new endoscopes. 

EC is a new kind of endoscope with ultra-high magnification, which can magnify 

digestive tract mucosal epithelium 520× to observe and evaluate in vivo cells, to 

improve cytological diagnosis efficiency and realize the so-called "optical 

biopsy".[59-61] This technique was first released by Olympus and observed in vivo 



esophageal squamous cell nuclei in the clinic.[62] However, the recognition and 

interpretation of EC images close to pathology have put forward high requirements 

for endoscopists. Therefore, the combination of EC and AI has gradually become a 

new research focus.[60] Kumagai et al. trained 4715 (1141 malignant and 3574 

non-malignant images) esophageal EC images based on GoogLeNet and achieved 

90.9% diagnostic accuracy on the independent test set. It showed that AI has the 

potential to assist endoscopists in real-time diagnosis of esophageal cancer without 

reference to histological biopsy.[31] Mori et al. diagnosed small colorectal adenomas 

( < 5 mm) in 791 patients based on Olympus colonoscopy (CF-H290ECI) and 

Cybernet CAD system (trained on 61,925 EC images). The results showed that the 

sensitivity and specificity of NBI mode or staining mode were about 90%.[63-64] With 

the development of EC and AI technology, real-time pathological diagnosis in vivo by 

endoscopists is expected to become a reality shortly. 

Electronic choledochoscope is an endoscope that can directly observe the bile duct. 

Bile duct pathologies ranging from benign choledocholithiasis to malignant biliary 

strictures cholangiocarcinoma constitute the majority of the volume of 

pancreatobiliary endoscopy. Indeterminate bile duct strictures, with uncertainty for the 

presence of malignancy, have remained an Achilles’ heel for a biliary 

endoscopist.[65]There are few kinds ofresearch on the application of AI in 

choledochoscope because of low resolution of SpyGlass cholangioscopy relative to 

colonoscopy and the infrequency incidence of such indeterminate bile duct 

strictures.[66] However, the application of AI in pancreaticobiliary endoscopy is of 

great potential, and it is expected to reduce inter-operator variability, enhance the 

accuracy of diagnosis, and assist in accurate therapeutic decision-making in real-time, 

thereby essentially mimicking the presence of an expert in every endoscopy suite. 

In EUS, AI is used for detecting anatomical features, differential pancreatic tumors, 

and cysts. Kuwahara T[67] collected 4000 EUS images to train a DL architecture 

(ResNet50) for  the malignancy of IPMN classification with an accuracy of 94%. 

Zhang JJ et al.[68] used Unet++ and ResNet50 for semantic segmentation and 

classification for EUS stations with accuracy of 82.4% in station classification and 



0.715 dice in segmentation. Seven et al.[69] collected a total of 685 images of GISTs 

from 55 retrospectively included patients to predict the malignant potential of gastric 

gastrointestinal stromal tumors (GISTs) based on DL models. The overall sensitivity, 

specificity, and accuracy of the DL model for predicting malignancy risk were 83%, 

94%, and 82% in the training dataset, and 75%, 73%, and 66% in the validation 

cohort, respectively. 

 

CLINICAL PRACTICE 

AI products in Endoscopy must undergo rigorous review to obtain regulatory 

approval before they can be commercialized. Meanwhile, the large number of 

endoscopic images used for AI model training requires the agreement of hospitals, 

patients, and industry. Therefore, the development cycle of endoscopic AI products is 

usually long. Currently, there are only a few AI products in endoscopy, which have 

obtained regulatory approval. These products mainly focus on CADe and CADx of 

colorectal lesions, aiming to improve the ADR and diagnostic accuracy. Some of them 

were developed by the major endoscopy companies based on their endoscopes and 

clinical images, such as Endo-AID,[70] CAD EYE[71-72] and DISCOVERY.[73-74] In this 

way, the software and hardware of products were better matched. The other part 

comes from software companies that often support multi-band endoscopes, such as 

GI-Genius,[75-77] EndoBRAIN,[78-79] ENDOANGEL.[80-81] Table 3 summarized these 

AI products and their performance. 

Table 3. Summary of AI products 

Product Year Manufacturer Function Performance 

ENDO-AID[70] 2020 Olympus 

Corp., Tokyo, 

Japan 

Colon 

CADe 

integrated into the 

latest EVIS X1 

endoscopy system 

CAD EYE[71-72] 2020 Fujifilm Corp., 

Tokyo, Japan 

Colon 

CADe & 

CADx 

100 polyps in 25 

patients; 

CADe ADR: 85% 



(WLI), 89% (LCI);  

CADx: 88.8% 

(non-magnified 

BLI-LASER/LED), 

87.8% (magnified 

BLI-LASER/LED) 

DISCOVERY[73-74] 2020 Pentax 

Medical, 

Tokyo, Japan 

Colon 

CADe 

ADR: n = 803, 

48.0% (CADe) vs 

37.5% (standard)  

GI-Genius[75-77] 2019 Medtronic, 

Minneapolis, 

MN, USA 

Colon 

CADe 

ADR: n = 685, 

54.8% (CADe) vs 

40.4% (standard)  

The reaction time 

was faster by AI 

system as compared 

with endoscopists in 

82% of cases (n = 

277/337; difference 

1.27+3.81 s) 

EndoBRAIN[78-79] 2018/2020 Cybernet 

Corp., Tokyo, 

Japan 

Colon 

CADe & 

CADx 

trained using 69,142 

endocytoscopic 

images and 

identified colon 

lesions with 96.9% 

sensitivity, 100% 

specificity, 98% 

accuracy, a 100% 

positive-predictive 

value, and a 94.6% 



negative-predictive 

ENDOANGEL[80-81] 2020 EndoAngel 

Crop., 

WuHan, China 

CADe & 

CADx & 

improving 

endoscopy 

quality 

ADR: n = 704, 

16.0% (CADe) vs 

8.0% (standard)  

A per-lesion 

accuracy of 84.7%, 

sensitivity of 100%, 

and specificity of 

84.3% for detecting 

gastric cancer (n = 

1050) 

 

CONCLUSIONS 

After training with a large number of endoscopic images or videos, the endoscopy AI 

systems can reach the diagnosis level of general doctors or experts, so they have many 

potential clinical applications, such as detection of precancerous lesions, identification 

of lesions based on mucosal or vascular patterns, risk stratification before/during 

treatment, and assessment of key performance indicators. The main advantages of 

AI-assisted endoscopy systems are to reduce the workload of doctors, reduce missed 

diagnoses, and improve diagnosis efficiency and accuracy, so AI will become more 

and more important in clinical practice in the future. AI technology will provide a 

good way to obtain top-notch medical technology in areas with a lack of medical 

resources and low-level medical resources, and benefit the local people to realize the 

sharing of high-quality medical resources. The AI-assisted diagnosis system can be 

used as an important auxiliary method for physicians to complete accurate diagnoses 

under endoscopy, and it also provides an effective tool for training low-age 

endoscopists in the future. 

However, there are still many problems and challenges. First of all, researchers tend 

to collect high-quality endoscopic images to construct training sets and exclude 



common low-quality and unanalyzable images (eg, obscure images, those containing 

mucus, stained images, or those with partial views of lesions), which may lead to poor 

generalization in models in clinical practice.[82] In this case, the accuracy of the AI 

system may be exaggerated, as its good performance when using static, high-quality 

images does not guarantee that recognition will be successful when using dynamic 

videos. Secondly, the model is only tested in a small number of data sets, while the 

data used for clinical testing is huge. It is impossible to guarantee the real effect of the 

AI system in clinical application, even for products already on the market. Finally, 

there are ethical issues. AI products can only be used for auxiliary analysis while it is 

the doctor who really makes the judgment and assumes the responsibility. Therefore, 

no matter how high the accuracy of the system is, the doctor cannot rely too much on 

it. 

In summary, AI technology has made important achievements in GI endoscopy 

analysis research, while there are also many challenges and limitations. With further 

improvement of AI technology, it is expected that AI will have a routine application in 

endoscopic clinical practice in the future. 
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