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ABSTRACT

The aim of this mini-review is to introduce most prevalent autoimmune diseases, emphasize the importance of sympatho-
parasympathetic imbalance in these autoimmune diseases, demonstrate how such imbalance can be effectively treated 
using the bioelectronic medicine, and describe potential mechanisms of bioelectronic medicine effects on the autoimmune 
activity at the cellular and molecular levels.
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AUTOIMMUNE DISEASES

A low (usually undetectable) level in autoimmunity is 
normal and even essential for lymphocyte selection and 
immune system homeostasis, while a moderate level of 
autoimmunity can be detected as c irculat ing 
autoantibodies and small tissue infiltrates but generally 
does not cause clinical symptoms. When a high level of 
autoimmunity is sustained for a few days or weeks, it 
becomes pathogenic and starts to generate clinical 
symptoms of various autoimmune diseases (AIDs). 
AIDs are caused by a chronic malfunction of the 
immune system, when it recognizes auto-antigens in our 
own molecules and cells as harmful to us, initiating a 
cascade of pro-inflammatory molecular and cellular 
events leading to destruction of our own tissues. Due to 
heterogenicity of affected tissues and organs throughout 
our body, various AIDs are diagnosed by different 
specialties of physicians, making it difficult to estimate 
the overall prevalence of AIDs. A recent epidemiological 
study in Spain[1] indicated an overall prevalence of about 
11%, with the cumulative prevalence of 8.5% (or three 
quarters of all AIDs) attributed to the thyroiditis, 
psoriasis, inflammatory bowel disease (IBD), type 1 

diabetes, rheumatoid arthritis (RA), and polymyalgia 
rheumatica (Table 1). The list of prevalent AIDs may 
soon be extended to include the Post-coronavirus 
disease (COVID) syndrome, since autoimmunity play a 
critical role in its development.[2] As can be seen on 
Table 1, the most commonly affected organs are the 
thyroid gland, skin, small and large intestines, pancreas, 
skeletal muscles, joints, and kidney. Other organs can 
also be affected, such as the liver (e.g. primary biliary 
cholangitis, primary sclerosing cholangitis, and 
autoimmune hepatitis) and bladder (e.g. interstitial 
cystitis), but with a prevalence below 0.2%.[3,4]

SYMPATHO-PARASYMPATHETIC 
BALANCE IN AIDS 

Despite a heterogenicity of autoimmune responses in 
AIDs, one emerging common theme is the involvement 
of the autonomic nervous system with two main 
components, the sympathetic and parasympathetic 
branches, jointly regulating the immune functions 
throughout the body.[5] The degree of sympatho-
parasympathetic balance (SPB) can be readily measured 
by calculating the spectral parameters of heart rate 
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Table 1: List of major AIDs describing the affected organs and estimated prevalence based on data from the 
epidemiological study in Spain[1]

Autoimmune disease Affected organs Prevalence, %

thyroiditis thyroid gland 4.8

psoriasis skin 1.6

inflammatory bowel disease small and large intestines 0.9

type 1 diabetes pancreas, skeletal muscles 0.6

rheumatoid arthritis joints 0.6

polymyalgia rheumatica skeletal muscles 0.4

spondyloarthritis joints 0.3

celiac disease small intestine 0.3

lichen skin 0.3

glomerulonephritis kidney 0.3

Sjögren's syndrome secretory glands 0.3

vitiligo skin 0.2

total 11%

AIDs: autoimmune diseases.

variability (HRV) in the electrocardiogram.[6,7] The HRV 
assessment of autonomic activity gained popularity due 
to its accuracy and reproducibility, when the assessment 
is performed at specific physiological conditions (e.g., 
physical activity or post-prandial state).[8] The HRV 
assessment is also simpler while providing a similar 
accuracy compared with the traditional autonomic tests, 
such as deep breathing, Valsalva maneuver, and 
orthostatic stress (tilt table) test.[9,10] Using the HRV 
measure of SPB, a clinical study in thyroiditis patients 
uncovered considerable sympathetic dominance before 
the therapy and a recovery of SPB after a 6-month 
thyroid hormone replacement therapy.[11] Similarly, 
considerable sympathetic dominance was observed in 
patients with psoriasis,[12] IBD,[13–16] type 1 diabetes,[17–19] 
RA,[20–22] and polymyalgia rheumatica.[23] Furthermore, 
the HRV measure of SPB was shown to correlate with 
severity of the autoimmune response and to be 
predictive of the AID progression, as seen in the 
IBD,[13,14] type 1 diabetes,[17–19] and RA.[20–22]

BEM NERVE TARGETS

Recently, advances in the neural interface technology led 
to a development a new therapeutic approach termed 
the bioelectronic medicine (BEM) that aims to restore 
the SPB in the autonomic nervous system.[24] In this 
section, we will review the autonomic nerves that have 
been clinically targeted by the BEM.

The largest and most dominant parasympathetic nerve is 
the vagus nerve. The BEM that is targeting the vagus 
nerve can modulate the activities of multiple internal 
organs, as the vagus nerve directly innervates the heart, 
lungs, liver, esophagus, stomach, pancreas, small 
intestine, and proximal colon, while its innervation of 

kidneys, spleen, adrenal medulla, and reproductive 
organs is debated.[25] At the cervical (neck) level, the 
vagus nerve can be easily accessed without laparoscopy 
to allow simple surgical placement of the stimulating 
electrode cuff.[26] At the abdominal level, the vagus nerve 
is located rather deep in the body and requires a 
laparoscopic surgery for placing the electrode cuffs on 
the anterior and posterior vagal nerve trunks.[27] The 
vagus nerve stimulation (VNS) at the cervical level is the 
Food and Drug Administration (FDA)-approved for 
treating epilepsy,[28] depression,[29] and stroke.[30] Clinical 
trials are ongoing in the US for the RA,[31,32] heart 
failure,[33,34] asthma,[35] post-COVID syndrome,[36] and 
nephrotic syndrome[37] and in the EU for Crohn’s 
disease.[38] The abdominal VNS was previously FDA-
approved for treating obesity, but that approval was 
since reversed,[39] citing a rather its modest effect on 
weight loss compared to bariatric surgical procedures.[40]

The sacral nerve is nearly as large as the cervical vagus 
and is most easily accessible (also without laparoscopy) 
inside the sacral foramina allowing simple surgical 
placement of a stimulating lead along the nerve.[41] 
Unlike the vagus nerve, which is nearly 100% 
parasympathetic, the sacral nerve at the S2-S4 levels 
contains the parasympathetic as well as somatic fibers, 
including both the afferents and efferents.[42] The sacral 
nerve stimulation (SNS) can modulate the activities of 
multiple pelvic organs, including distal colon, 
anorectum, bladder, urethra, and genitals.[43] The SNS is 
FDA-approved for treating overactive bladder[44] and 
fecal incontinence[45] and is approved for constipation in 
the EU[46] but not in the US. Clinical trials are ongoing 
or recently completed for the RA,[47] irritable bowel 
syndrome,[48,49] and endometriosis.[50]

Unlike the parasympathetic nerves that arise from two 
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discrete anatomic locations (cervical brainstem and 
sacral spinal cord), the sympathetic nerves arise at 
multiple sympathetic ganglia along the torso,[51] with 
each sympathetic nerve typically following an artery by 
splitting into multiple fascicles that surround the artery 
to form a neurovascular bundle.[52] These sympathetic 
fascicles cannot be easily dissected from the artery wall, 
so a stimulating electrode (e.g. a cuff or a patch) has to be 
placed around the artery without compromising its 
pulsatility.[52–54] Delicate arterial cuffs for applying the 
BEM therapy were recently developed by Galvani 
Bioelectronic[52,53] and applied at the splenic nerve for 
treating the RA.[55,56]

In addition to stimulating the parasympathetic and 
sympathetic nerves carrying both the afferent and 
efferent information, yet another BEM approach is to 
stimulate the autonomic nerves containing 100% 
afferent fibers that relay visceral information into the 
brainstem autonomic centers. Surgically, one of the 
autonomic afferent nerves, the carotid sinus nerve, is 
readily accessible by placing a stimulating patch electrode 
on a surface of the carotid artery at a level of the carotid 
sinus without compromising its pulsatility.[54] Such 
patch-based BEM therapy is FDA-approved for treating 
the heart failure.[57] An alternative surgical approach for 
accessing the carotid sinus nerve is to insert an intra-
arterial stent in the carotid artery at a level of the carotid 
sinus (also without compromising the arterial pulsatility), 
with the stent transiently expanding during each cardiac 
systole to apply mechanical pressure on the nerve 
endings.[58] Such stent-based BEM therapy is being 
clinically evaluated in the US for treating the 
hypertension.[59,60]

Yet another BEM approach for activating the vagus 
nerve is via the somato-vagal reflex induced by electrical 
skin stimulation on the leg or arm at the locations 
corresponding to specific acupoints, such as Zusanli 
(ST36, on the leg) and Neiguan (PC6, on the arm).[61–68] 
Electrical stimulation at these acupoints was shown to 
be effective in treating sepsis,[69,70] ulcerative colitis,[71] 
and RA.[72]

ANTI-INFLAMMATORY EFFECTS OF 
BEM

As described in the previous section, various BEM 
approaches and nerve branches are available for 
modulating the activities of the parasympathetic and 
sympathetic nerves. Therefore, it is important to 
determine which of these might be best for treating 
individual AIDs. Twenty years ago, Dr. Kevin Tracey 
suggested that VNS can be applied to suppress 
autoimmune activation in multiple immuno-competent 
organs, such as the spleen, lymph nodes of the small 
intestine, and adrenal medulla.[73] The anti-inflammatory 

effect of VNS on the spleen attracted a lot of attention, 
once clinical efficacy was demonstrated for several 
spleen-mediated AIDs, such as the RA[74,75] and lupus.[76] 
The anti-inflammatory effect of VNS on the small 
intestine was demonstrated in the Crohn’s disease.[77,78] 
The animal studies suggest that the anti-inflammatory 
effects of VNS on two immuno-competent organs, 
spleen and small intestine, are mediated via different 
abdominal branches of the vagus.[79–82] The same 
abdominal branch of the vagus controls both the spleen 
and the adrenal gland: it passes through the sympathetic 
cel iac ganglion,[83] where i t  makes no synaptic 
connections with the splenic nerve,[84] so the VNS effect 
on the spleen is likely mediated by direct vagal synapses 
on the spleen,[85] while the VNS effect on the adrenal 
medulla is likely indirectly mediated by the synaptic 
connections between the vagus and the adrenal nerve 
(the vago-sympathetic reflex).[86,87] The VNS also has an 
anti-inflammatory effect on other organs, such as the 
liver, lungs, and upper genital tract, with preclinical 
studies demonstrating its efficacy in the rodent models 
of pulmonary arterial hypertension,[88] hepatitis,[89] and 
endometriosis.[90] Therefore, future clinical studies may 
be designed to apply VNS at the organ-specific 
abdominal branches in order to achieve better efficacy 
and avoid the side effects seen in the cervical VNS, 
particularly on the heart (bradycardia) and lungs 
(dyspnea and bronchospasms).[91,92]

The distal colon is controlled by a branch of the sacral 
nerve (the pelvic splanchnic nerve) rather than by the 
vagus.[93] Accordingly, the anti-inflammatory effect of 
SNS on the colon and bladder have been observed in 
the clinical studies for treating ulcerative colitis[94] and 
interstitial cystitis,[95] while the anti-inflammatory effect 
of SNS on other pelvic organs (e.g. ovaries and prostate) 
has not been clinically evaluated.

Since the vagus and sacral nerves contain both the 
afferent and efferent parasympathetic fibers, the anti-
inflammatory effect of VNS and SNS could be due to 
either a direct activation of these parasympathetic 
efferents and/or the activation of the parasympathetic 
afferents projecting to the brainstem parasympathetic 
control centers and resulting in activation of the vagal 
and sacra l  efferents.[96,97] Moreover ,  the  vago-
sympathetic reflex has been proposed, where the 
abdominal vagal efferents in the celiac ganglion activate 
the sympathetic efferents in the greater splanchnic nerve, 
including the splenic nerve[98–103] and adrenal nerve.[104] 
With that rationale, Galvani Bioelectronics recently 
initiated clinical trials in the US and UK, where a direct 
splenic nerve stimulation (rather than VNS) is being 
used to treat the RA.[55,56] No other sympathetic nerves 
have been targeted to date in clinical studies aiming to 
provide anti-inflammatory therapy to patients with 
AIDs.



Pikov • Volume 1 • Number 2 • 2023 https://www.gmiw-journal.com

4

CELLULAR AND MOLECULAR 
MECHANISMS OF THE ANTI-
INFLAMMATORY EFFECTS OF BEM
The BEM anti-inflammatory therapies targeting the 
spleen (i.e. VNS and splenic nerve stimulation) are 
shown to activate the choline acetyltransferase (ChAT)-

and β2 nicotinic acetylcholine receptor (β2 nAChR)-
expressing T cells, which in turn activate the anti-

inflammatory α7 nAChR-expressing macrophages 
resident in the spleen; while the BEM anti-inflammatory 
therapies targeting the intestines (i.e. VNS and SNS) 
activate the enteric neurons, which in turn activate the 

anti-inflammatory α7 nAChR-expressing macrophages 
resident in the intestinal mucosa.[105–107] In both the 

spleen and intestines, activation of the α7 nAChR-
expressing macrophages inhibits the release of pro-
inflammatory cytokines.[107,108] Interestingly, while the 

intestinal mucosa contains both the α7 nAChR-

expressing macrophages and the α7 nAChR-expressing 
dendritic cells, only the former were shown to be 
activated by the VNS.[109] BEM-initiated activation of the 

α7 nAChR-expressing macrophages in the intestines 
restores a healthy balance among resident T cells by 
reducing prevalence of pro-inflammatory ones, such as 
the T-helper 17 (Th17) cells, and increasing prevalence 
of anti-inflammatory ones, such as the regulatory T 
(Treg) cells.[107] Additional and less-explored BEM-
initiated mechanisms in the intestines involve enhancing 
the barrier function of the epithelial cells[110,111] and 
suppressing infiltration of neutrophils and monocytes 
into the intestinal tissue.[112] Cellular and molecular 
mediators of the anti-inflammatory response in the 
adrenal medulla are not well-studied, with a recent 
animal study showing that the anti-inflammatory 
response to a low-level (0.5 mA) somatic afferent 
stimulation at ST36 uses the vagal supraspinal pathway, 
which induces NPY+ adrenal chromaffin cells to secrete 
epinephrine, norepinephrine, and dopamine; while the 
anti-inflammatory response to a high-level (3 mA) 
somatic afferent stimulation at ST36 uses the 
sympathetic spinal (rather than vagal supraspinal) 
pathway, which induces NPY+ splenic neurons to 
secrete norepinephrine.[104,113,114]

SUMMARY

High prevalence of AIDs and demonstration of the 
sympathetic dominance in most AID patients create an 
opportunity for applying the BEM to restore the SPB as 
a means of inducing a well-demonstrated beneficial anti-
inflammatory effect on the autoimmune activity.  The 
BEM clinical toolbox is already quite extensive and 
includes cervical and abdominal VNS, SNS, splenic 
nerve stimulation, and carotid nerve stimulation, with 
many smaller autonomic nerve branches potentially 
targetable as well, as the neural interface technology is 
miniaturizing in the coming years. The BEM therapies 

have already been applied for treating IBD (both the 
Crohn’s disease and ulcerative colitis), RA, and lupus. As 
we learn more about the potential mechanisms of the 
BEM therapy at the cellular and molecular levels and 
develop smaller neural interfaces, the range of AIDs 
treated by the BEM is likely to expand rapidly.
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