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ABSTRACT

Background and Objectives: Cytokines and other immune regulatory molecules are critical for mounting an effective 
immune response against cancer. The gastrointestinal (GI) microbiome plays a significant role in the pathogenesis of cancer 
and the response to immunotherapy. The central hypothesis guiding this project was that specific immune biomarkers and 
microbiome profiles will serve as predictors of effective vs. ineffective immunotherapy in patients with malignant diseases. 
This pilot feasibility study aims to establish baseline immune markers and microbiome profiles in subjects with newly 
diagnosed malignant solid tumors (n = 10), healthy subjects without diagnosed malignant disease (n = 10), and in existing 
patients treated with immunotherapy (n = 10). Methods: Parallel blood and stool samples were collected and used in the 
biomarker and microbiome analysis. The biomarkers in the two groups were analyzed by Principal Component Analysis, heat 
map with clustering, and differential expression based on P value, and Significance Analysis of Microarrays (SAM). The 
microbiome analysis was performed using long read 16S rRNA encoding gene sequencing with data visualization and 
analysis in R. Significant differences in alpha and beta diversity were evaluated between the groups. Results: Several 
biomarkers that were differentially expressed were identified. Significant taxa differences at the class (Clostridia), order 
(Clostridiales, Lactobacillillales), family (Eubacteriaceae, Lactobacillaceae), genus and species were identified. Furthermore, a 
limited analysis of samples from existing patients on immunotherapy who were responders (n = 4) vs. stable non-responders 
(n = 5) identified differentially expressed immune biomarkers and significant bacterial taxa differences. Conclusion: This 
study has established the feasibility for conducting a future larger study at the local community cancer center to evaluate 
whether immune and microbiome markers can predict effective vs. ineffective responses to immunotherapy and whether 
either or both molecular and microbial markers may have therapeutic potential.

Key words: immune biomarker, fecal microbiome, malignant solid tumors, feasibility study, immunotherapy, responder, 
progressor
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INTRODUCTION

Biomarker discovery is an exciting area of scientific 
breakthroughs in various medical conditions including 
cancers, infectious diseases, autoimmune and allergic 
diseases.[1–4] Availability of the technology to screen for 
many immune biomarkers using relatively small 
quantities of human body fluids including the blood has 
resulted in enormous research efforts in this direction. 
Primary reasons of anticipated benefits from identi-
fication of biomarkers for cancers include their utility in 
the diagnosis, risk analysis, disease classification, 
prevent ion,  treatment ,  decis ion making,  and 
management of malignant diseases.[5–9] Furthermore, 
such knowledge is also expected to advance the 
mechanistic basis of diseases at the fundamental level.[1–4] 
Therefore, it is critical to advance immune biomarker 
discovery in various human diseases including malignant 
solid tumors, which is the focus of this study.

There is growing scientific evidence supporting the 
hypothesis that commensal microbial populations (i.e., 
microbiome) present in humans have a significant 
impact on human health.[10–12] Numerous studies, both in 
humans and in animal models, demonstrate major 
impacts of specific populations of gut bacteria on the 
pathogenesis of cancer, obesity, allergies, asthma, and 
neurological disorders.[10–12] Consequently, large-scale 
efforts are underway to catalog the human microbiome 
both in Europe (European Metagenomics of the Human 
Intestinal Tract) as well as in the USA (the Human 
Microb iome Pro jec t ) . [10–12] Numerous  s tud ies  
demonstrate that the fecal microbiome profile is 
different not only in cancer vs. non-cancerous control 
subjects, but also in responder vs. non-responder cancer 
patients to various types of treatments in several types of 
malignant tumors.[13–25]

The first set of studies in this domain demonstrated that 
specific gut bacteria could positively influence the 
outcome of immunotherapy in mouse models of 
melanoma and colon cancer.[15–17] For example, supple-
mentation of Bifidobacteria had the same degree of effect 
in controlling tumor burden as the efficacy of 
checkpoint inhibitor (anti-PD-L1) therapy in a mouse 
model of melanoma.[25] Furthermore, combination 
therapy with the bacteria plus the drug was able to 
eliminate tumor expansion.[25] Similar beneficial effects 
of another type of gut bacteria (Bacteriodes) have been 
reported in animal models of melanoma and colon 
cancer with anti-CTLA-4 therapy and cyclophosphamide 
therapy.[15,16] The underlying beneficial effect of these 
bacteria in cancers is mediated by potentiating natural 
anti-cancer immunity.[15–17,25] Two recent studies 
demonstrate that fecal transplantation from responders 
to non-responders in anti-PD-1 immunotherapy 

melanoma patients shows benefits and overcomes 
refractoriness to immunotherapy in a subset of treated 
patients.[26,27] However, this procedure is not readily 
available and could be costly (lowest cost $ 5250).[28]

Despite exciting recent advancements on the potential 
benefits of immune biomarkers and the gut microbiome 
patterns, very little is known about their relationships 
with the specific type of cancers or groups of cancers 
(e.g., solid malignant tumors as a group). Furthermore, 
specific biomarkers and microbiome signatures to 
predict success or failure of different types of cancer 
immunotherapy protocols also remain to be clearly 
defined.

The long-term goal of this project is to elucidate the 
relationship among systemic immune biomarkers, fecal 
microbial signatures, and the outcome of cancer 
immunotherapy in patients treated at the Herbert-
Herman Cancer Center in Lansing, Michigan. The 
present pilot study was conducted to establish the 
feasibility for conducting a future, larger, long-term 
study to advance our long-term goal. Such study will also 
inform the development of novel intervention methods 
to enhance therapeutic success in cancer patients. The 
overall hypothesis guiding this feasibility study was that 
different patterns of systemic immune markers and fecal 
microbiome profiles will be identified by conducting a 
pilot study using a small sample of subjects with and 
without malignant solid tumors as groups.

There were four specific objectives for this feasibility 
study: (i) to demonstrate successful patient recruitment 
for the study; (ii) to optimize methods to collect, 
transport and store fecal and blood samples from three 
groups of subjects: newly diagnosed with malignant solid 
tumors (N group), existing patients undergoing 
immunotherapy for solid tumors (E group), and healthy 
control subjects without malignant tumors (H group); 
(iii) to analyze immune markers in the plasma of these 
subjects; and (iv) to determine the fecal microbiome 
profile in these subjects. We report the identification of 
differential biomarkers and microbiome profiles in 
subjects without and with malignant tumors and 
establish the feasibility of conducting a future larger 
study.

MATERIALS AND METHODS

Subjects, approval of the protocol by the 
Institutional Review Boards, and recruitment
The project was approved by the Sparrow Health 
System Institutional Review Board (Lead IRB) and the 
Michigan State University (MSU) IRB. Newly diagnosed 
patients with malignant tumors (n = 10), existing 
patients undergoing immunotherapy (n = 10), and 
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Table 1: Demographics of subjects used in this study

Groups of subjects Gender Age (range, mean ± SD, median) Types of solid malignancies

Newly diagnosed patients with malignancies (n = 10) 5F, 5M 53–91, 66 ± 11, 64 Adenocarcinoma of the lungs (3) 
Mixed histology lung cancer (1) 
Small cell lung cancer (1) 
Esophageal adenocarcinoma (1) 
Malignant melanoma (1) 
Head and neck squamous cell carcinoma (1) 
Ovarian adenocarcinoma (1) 
Bladder cancer (1) 

Existing cancer patients on immunotherapy (n = 10) 5F, 5M 56–75, 66.4 ± 7.1, 65 Adenocarcinoma lungs (5) 
Squamous carcinoma lungs (1) 
Clear cell kidney cancers (2) 
Endometrial cancer (1) 
Merkel cell carcinoma (1) 

Healthy subjects without malignancies (n = 10) 7F, 3M 38–83, 63 ± 14.7, 64 No malignancies

healthy subjects without malignant tumors (n = 10) were 
recruited for this study (Table 1). Existing patients with 
malignancies undergoing immunotherapy were treated 
with standard check point inhibitor protocols (NSCLC, 
melanoma, head and neck cancers, bladder and renal 
cancers and Hodgkin’s Lymphoma). Good responders 
were considered all patient with partial response (PR) or 
better by Recist 1.1 criteria (Eisenhauer et al. 2009). Poor 
responders were patients with stable disease and 
responses that did not achieve PR.

The following inclusion criteria were used to enroll 
patients for this study: (1) Any new patients starting 
treatment for any malignancies with one of the following 
approved immune check point inhibitor therapies: 
Pembrolizumab, Nivolumab or Atezolizumab; (2) 
Patient could have a newly diagnosed disease or may 
have been previously treated with other lines of therapy 
including any chemotherapy or targeted treatments. 
There was no limit on previous lines of treatment; and 
(3) Any patient having equal or greater than 20% 
reduction in bidimensional measurements by RECIST 
1.1 were called as responders for this study. Non 
responders were patients who had less than 20% 
reduction in measurements, stable or progressive 
disease.

Fecal samples were collected from new patients before 
starting the therapy, healthy subjects at the time of 
enrollment, and from existing patients during immuno-
therapy. Complete blood count (CBC), Comprehensive 
metabolic panel (CMP) and other standard of care 
clinical tests were done based on best clinical practice. 
Response to therapy was determined based on CT scan 
at 3 months and 6 months and then at every 3 months 
interval until progression or removal due to toxicities or 
patient choice. This was in accordance with Good 
Clinical Practice (GCP) and was standard of care for 
patients with malignancies treated with oncolytic 
treatment. Blood and fecal samples were collected in 

parallel from all subjects.

Consent: Informed written consent from each donor were 
obtained. Patients and healthy donors were provided the 
following information: (1) Collect stool in the plastic 
toilet hat (Fisher 02-544-208) and use the spatula in the 
specimen collection tube to put ~10 grams of the stool 
(fill ~ 3/4th full) into the plastic specimen bottle 
(Parapak, Meridian Bioscience 900312) and tightly close 
the lid. Write your name, date, and time of collection. 
Store at room temperature. Do not refrigerate the 
sample; store and transport the sample at room 
temperature only. Any deviations to this method must 
be reported when samples are delivered. Return the 
sample to the Cancer Center within 24 hours of sample 
collection; (2) Provide the diet information for the past 2 
days prior to fecal donation. This information will be 
collected on a specific form (form enclosed) by the staff 
of Sparrow Cancer center’s clinical trials office; (3) 
Provide the verification that antibiotics were not taken 
for at least 5 days prior to stool donation; and provide 
information on the antibiotics if they were used during 
the past month prior to fecal donation. This information 
will be collected on a specific form (form enclosed) by 
the staff of Sparrow Cancer center’s clinical trials office; 
and (4) Provide information on the gender, ethnicity, 
age, and history of allergies (airways allergy, skin allergy 
and food allergies). For information on food allergies 
and food intolerances, donors will be asked to name the 
specific food or agent they are allergic or intolerant to. 
This information will be collected on a specific form 
(form enclosed) by the staff of Sparrow Cancer center’s 
clinical trials office.

Blood collection, processing and biomarker 
analysis
Blood samples were collected, stored, and transported at 
4°C to the immunology laboratory (Dr. Gangur) at 
MSU. The blood samples were processed within 24 
hours of collection, plasma harvested and stored in 
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Table 2: The differentially expressed biomarker (s) identified in this study by SAM (delta = 1.2): comparison of 
subjects without malignant tumors vs. newly recruited cancer patients

Biomarkers Healthy patients Cancer patients D value Raw P Q value

IP-10 39.36 ± 15.54 94.19 ± 52.82 -3.148935 0.0011 0.0134573

MCP-1 178.77 ± 34.67 276.64 ± 95.98 -3.042022 0.0011 0.0134573

HCC-4 425.51 ± 67.49 600.18 ± 125.25 -3.882261 0.0003 0.0055053

TIMP-1 1040.17 ± 113.27 1260.61 ± 106.65 -4.480754 0.0000 0.0000000

TIMP-2 2156.16 ± 295.97 2472.75 ± 185.36 -2.866803 0.0021 0.0220210

OPN 20585.44 ± 7558.66 32759.98 ± 106.65 -4.546563 0.0000 0.0000000

PF4 8315.03 ± 2199.71 12131.51 ± 2019.77 -4.041331 0.0001 0.0024468

Table 3: The differentially expressed biomarker(s) identified by SAM (with delta = 1.2): comparison of responders vs. 
stable non-responder subgroups within the existing patients treated with immunotherapy

Biomarkers Responder (E1239) Stable non-responder (E456810) D value Raw P Q value

CXCL16 30636.78 ± 22183.49 3614.79 ± 6852.99 -3.349104 0.0030303 0.0542516

IFNg 822.51 ± 681.37 117.12 ± 85.28 -2.605509 0.0116162 0.0542516

ANG-2 6177.3 ± 2002.55 3591.18 ± 420.88 -2.533098 0.0129293 0.0542516

I-TAC 5809.71 ± 2619.55 1870.85 ± 1942.94 -2.502608 0.0140404 0.0542516

CTACK 4553.02 ± 2570.52 1222 ± 1145.46 -2.403843 0.0163636 0.0542516

MIP-3b 3157.85 ± 1872.02 915.2 ± 397.89 -2.348597 0.0179798 0.0542516

IL-17F 30636.78 ± 22183.49 3614.79 ± 6852.99 -2.347801 0.0180808 0.0542516

MCP2 375.99 ± 185.08 149.88 ± 94.94 -2.175568 0.0261616 0.0542516

MPIF-1 1559.2 ± 635.15 795.6 ± 329.94 -2.167492 0.0263636 0.0542516

TSLP 1653.41 ± 1018.09 361.56 ± 729.99 -2.128772 0.0287879 0.0542516

IL-31 3772.85 ± 3025.35 447.97 ± 876.59 -2.124841 0.0291919 0.0542516

MIF 7715.39 ± 5062.2 2258.39 ± 951.85 -2.124368 0.0292929 0.0542516

SDF-1a 202.74 ± 148.61 40.38 ± 38.61 -2.070678 0.0327273 0.0542516

BTC 717.9 ± 644.74 40.82 ± 91.27 -2.070200 0.0329293 0.0542516

IP-10 178.49 ± 123.42 46.08 ± 11.83 -2.067112 0.0335354 0.0542516

B7-2 3436.31 ± 2462.31 871.16 ± 386.8 -2.059756 0.0342424 0.0542516

LIF 822.51 ± 681.37 117.12 ± 85.28 -2.045022 0.0354545 0.0542516

IL-1a 201.66 ± 164.95 28.73 ± 25.46 -2.025479 0.0368687 0.0542516

TNFb 147.83 ± 133.46 9.62 ± 13.4 -1.999671 0.0387879 0.0542516

IL-6 109.76 ± 78.4 21.22 ± 6.84 -1.979169 0.0415152 0.0542516

IL-23 400.28 ± 364.99 31.14 ± 65.74 -1.974370 0.0425363 0.0542516

aliquots at −70°C. Plasma was used in the biomarker 
analysis using a protein microarray method (Ray Biotech 
Inc.). The core bioinformation group at the Ray Biotech 
analyzed all the immune biomarker data and determined 
the significance. The processes related to the analysis 
were as follows.

Data filtration: Biomarkers showing no variation across 
all the subjects (i.e., zero-variance), were excluded from 

the analysis.

Data scaling for heatmap and principal coordinate 
analysis: The biomarkers values were centered and 
scaled by subtracting the mean of each biomarker from 
the data and then dividing it by the standard deviation, 
respectively. Centering and scaling results in a uniform 
mean and scale across all the biomarkers but leaves their 
distribution unchanged.
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Figure 1. Analysis of immune biomarkers in subjects without malignant tumors (healthy subjects) vs. newly recruited subjects with malignant solid tumors 
(new patients). A. Heatmap of 100 biomarkers in healthy (H) subjects vs. new patients (N). B. Volcano plot comparing the fold change and P value of 100 
biomarkers in healthy (H) subjects vs. new patients (N). Each point represents a biomarker. C. Heatmap of 7 differentially expressed biomarkers between 
healthy (H) subjects vs. new patients (N). D. PCA plots of 7 differentially expressed biomarkers between healthy (H) subjects vs. new patients (N). PCA: 
principal component analysis.

Principal component analysis: The scaled data were 
transformed with principal component analysis (PCA). 
Each principal component (PC) derived from PCA was 
a weighted summation of all the input measurements/
biomarkers, in which the weights form a vector 
orthogonal to those of the other PCs. Thus, a sample 
with P biomarker values was transformed to a datapoint 
defined by PCs. The PCs were ordered by variation 
contained/explained by themselves, thus providing a 
good way for dimension reduction and pattern 
observation. Also, the biomarkers with large weights in a 

PC might share some common characteristics.

Heatmap with hierarchical clustering: The scaled 
and centered data were plotted as a heatmap in which 
the different colors represent biomarker expression 
levels. The biomarkers and samples were then subjected 
to hierarchical clustering based on Euclidean distance.

Comparison across groups: Each biomarker value was 
summarized by its mean and standard deviation, or 
median with minimum and maximum responses across 
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the groups. The fold change between groups was 
calculated as the ratio of the mean or median. If the 
biomarkers met or did not meet normality criteria across 
two groups, the significance of expression difference 
(FDR P < 0.05) was evaluated by the paired t-test or 
signed-rank test, respectively.

Significance analysis of microarrays: The significance 
analysis of microarrays (SAM) identifies differentially 
expressed biomarkers or genes.[29] Unlike the above-
mentioned statistical tests that rely on P value from 
theoretical probability distribution, SAM compares a t-
like statistic observed across groups with an estimate 
obtained from randomized permutations of the samples. 
The biomarkers with deviations larger than predefined ∆ 
(default 1.2) were identified as differentially expressed.

Software: All analyses were conducted in the R 
programming language V3.6.3.[30] The SAM analysis was 
implemented with the R package siggenes 1.60.0.[31] The 
Pathway/GO over-representation and GSEA analyses 
were implemented with the R package clusterProfiler.[32]

Fecal sample-processing, and microbiome 
analysis
During collection and transportation to the clinic, all 
stool samples were at ambient temperature per the 
published method.[33–35] The Cancer Center personnel 
de-identified the samples so samples could be stored and 
analyzed in a blinded fashion. Samples were then 
transported on ice briefly (up to 2 hours) and stored at 
Michigan State University (Dr. Gangur's Immunology 
Laboratory). Stool samples were then stored in aliquots 
at −70°C. DNA extractions and fecal microbiome 16S 
rRNA gene sequencing was conducted by Loop 
Genomics Inc., which provided the taxonomic and 
count data to Dr. Sarah Comstock (Microbiome 
Laboratory, Michigan State University), who conducted 
further analysis using the published methods from her 
laboratory.[36–40] Sequence counts were rarified to 9999 
reads per sample (performed 999 times, averaged, then 
rounded), and rarefaction curves confirmed adequate 
community coverage. Rarified count data was used in 
further analyses. Alpha (within participant) and beta 
(between participants by treatment group) diversity 
indices were used to characterize the gut microbial 
diversity. We quantified alpha diversity using three 
metrics, Chao1, Shannon, and Inverse Simpson. Each 
provides insight into the overall community diversity 
within an individual by accounting for richness (Chao1) 
or both richness and evenness (Shannon/Inverse 
Simpson). A higher score indicates a higher diversity. 
Beta diversity was visualized by plotting the Sorensen 
and Bray-Curtis dissimilarity scores on a principal 
coordinates plot. An individual is represented by a single 
point, and the closer two points are to each other, the 

more similar the respective gut microbial communities 
of those two individuals. Clustering of samples by group 
would suggest differences in community composition by 
group. To compare alpha diversity by group either 
ANOVA (normally distributed data) or Friedman 
Wilcoxon rank-sum (non-normally distributed data) tests 
were used. To compare beta diversity by group, 
PERMANOVA was used via the adonis function in the 
vegan package, and differences in group dispersion were 
determined using PERMDISP in the same R package.[41] 
To make taxa level comparisons by group, counts were 
compared across groups for each taxa using negative 
binomial regression. P values were false discovery rate 
corrected using the method of Benjamini-Hochberg.[42] 
All microbiota-related diversity and statistical analyses 
were conducted using R, a free statistical software 
program.

RESULTS

Identification of differentially expressed 
immune biomarkers between healthy vs. new 
cancer patients not yet treated
Subjects in this study were categorized into three groups 
depending on the specific types of malignancies they had 
(Table 1). To establish baseline differences in systemic 
immune biomarkers between the subjects with and 
without malignant tumors, comparisons were made. The 
biomarkers in the two groups were analyzed by Principal 
Component Analysis, heat map with clustering, and 
differential expression based on P value, and significance 
analysis of microarrays (SAM). The PCA showed that 
most variation of data was explained by PC1 (65.2%), 
and then PC1 (9.6%). The first two PCs presents the 
pattern of samples while keeping as much as information 
about variations across them.

Based on heatmap with hierarchical clustering, the 100 
biomarkers were clustered into 4 groups (Figure 1A) by 
Euclidean distance after scaling and centering. The 
Figure 1B shows the volcano plot comparing the fold 
change and P value of 100 biomarkers in which each 
point represents a biomarker. As evident, the following 
15 biomarkers were significantly different (P < 0.05) 
between these groups: IGF-1, MPIF-1, IL-12p70, IL-10, 
CXCL16, IL-6, RANTES, MCP-1, IP-10, IL-1a, TIMP-
2, HCC-4, PF4, OPN, and TIMP-1. Blood levels of all 
these biomarkers were significantly higher in newly 
recruited cancer patients with malignant tumors.

The data was further tested by SAM (with delta 1.2) and 
identified the following 7 differentially expressed 
biomarkers: IP-10, MCP-1, HCC-4, PF4, OPN, TIMP-1, 
TIMP-2. The Figure 1C shows the heatmap analysis of 7 
differentially expressed biomarkers between the two 
groups. The Figure 1D shows the PCA plots of 7 differ-
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entially expressed biomarkers between the two groups. 
The Table 2 shows the comparison of 7 differentially 
expressed biomarkers between the two groups. As 
evident, these 7 immune biomarkers were at significantly 
higher levels in the blood of cancer patients at diagnosis 
compared to the healthy subjects without malignant 
tumors.

Comparison of immune biomarkers between 
healthy vs.  exist ing cancer pat ients 
undergoing immunotherapy
The biomarkers in the two groups were analyzed by as 
above. One biomarker with zero variance (GRO) was 
excluded from PCA and heatmap analysis. The PCA 
showed that most variation of data was explained by 
PC1 (63.7%), and then PC2 (8.9%) (Figure S1A). Based 
on heatmap with hierarchical clustering, 99 biomarkers 
were clustered into 4 groups (Figure S1B) by Euclidean 
distance after scaling and centering. Figure S1C shows 
the volcano plot comparing the fold change and P value 
of 99 biomarkers in which each point represents a 
biomarker. As evident, the following 10 biomarkers were 
significantly different (P < 0.05) between these groups 
with higher levels noted in the cancer patients on 
immunotherapy: IGF-1, HCC-4, MIP-3b, IP-10, ICOS, 
CD28, PD-1, RANTES, OPN, NAP-2. However, based 
on testing by SAM (with delta 1.3) only 1 biomarker 
(NAP-2) was found differentially expressed between the 
2 groups with higher levels noted in the cancer patients 
on immunotherapy (Figure S1D).

Identification of differentially expressed 
immune biomarkers in responder vs. stable 
subgroup of cancer patients on immuno-
therapy
Based on response to immunotherapy, the existing 
patients on immunotherapy consisted of 3 subgroups: 
responder (n = 4), non-responder stable (n = 5), non-
responder progressor (n = 1). Therefore, to determine 
whether differences in systemic immune biomarkers 
could be identified between the responder vs. non-
responder stable groups of cancer patients on immuno-
therapy, we conducted biomarker analysis as described 
above. One biomarker with zero variance (GRO) was 
excluded from PCA and heatmap analysis.

The PCA showed that most variation of data was 
explained by PC1 (70.6%), and then PC2 (10.4%) etc. 
(Figure 2A). Based on heatmap with hierarchical 
clustering, the 99 biomarkers were clustered into 4 
groups (Figure 2B) by Euclidean distance after scaling 
and centering. Figure 2C shows the volcano plot 
comparing the fold change and P value of 9 biomarkers 
in which each point represents a biomarker. As evident, 
the following 2 biomarkers were significantly different 
(P < 0.05) between these groups: IL-8 and CXCL16. 

Higher levels were noted in the responder group 
compared to the non-responder stable group of patients.

The data was further tested by SAM (with delta = 1.7). 
This analysis identified 21 differentially expressed 
biomarkers shown in the heatmap analysis (Figure 2D): 
CXCL16, IFNg, ANG-2, I-TAC, CTACK, MIP-3b, IL-
17F, MCP-2, MPIF-1, IL-6, TSLP, IL-31, MIF, SDF-1a, 
BTC, IP-10, B7-2, LIF, IL-1a, TNF-b, IL-23. Figure 2E 
shows the PCA plots of differentially expressed 
biomarkers between the two groups. Comparison of 
these 21 differentially expressed biomarkers between the 
two groups is shown in Table 3. All 21 immune markers 
were present at higher levels in responder group 
compared to the non-responder stable group of patients.

Fecal microbiome analysis between healthy 
vs. new cancer patients not yet treated
To establish baseline differences in the fecal microbiome 
profile between the subjects with (n) and without (h) 
malignant tumors, comparisons were made at the phyla, 
class, order, genus, and species levels. The two groups of 
subjects had significant differences in beta diversity at 
the phylum level (Sorensen metric, PERMANOVA, P = 
0.013; PERMDISP, P = 0.620) (Figure 3A). The healthy 
group had a significantly higher alpha diversity at the 

class level (11.25 ± 2.62) compared to the cancer patients 

(8.8 ± 2.10) (Chao 1 metric, P < 0.05).

The following taxa were significantly different at the 
class level: Clostridia (higher in healthy subjects, P < 
0.05), and possibly Bacilli (higher in cancer patients, P = 
0.05) (Table 4). At the order level, Clostridiales were 
higher in healthy subjects (P < 0.05), and possibly 
Lactobacillales were higher in cancer patients (P = 0.052) 
(Table 4). At the family level, Eubacteriaceae were higher 
in healthy subjects (P < 0.01) and Lactobacillaceae were 
higher in cancer patients (P < 0.01) (Table 4).

At the genera level, the two groups of patients showed 
significant differences in the following 7 genera (P < 
0.05): whereas Clostridium, Dorea, Intestinibacter, and 
Lactobac i l lu s  were higher  in cancer  subjects ,  
Catenibacterium, Erysipelotrichaceae, and Subdoligranulum 
were higher in healthy subjects (Table 4). At the species 
level, whereas Clostridium perfringens, Intestinibacteria sp., 
and Lactobacillus salivarius were higher in cancer subjects, 
Catenibacterium sp., Erysipelotrichaceae sp., and Subdoli-
granulum sp. were higher in healthy subjects (Table 4).

Fecal  microbiome analys is  between 
responder vs. stable cancer patients treated 
with immunotherapy
To establish the possible differences in the fecal 
microbiome profile between the cancer patients on 
immunotherapy that are responders (n = 4) vs. non-
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Table 4: Taxonomic abundance in fecal samples collected from subjects without malignant tumors (healthy) vs. 
newly recruited patients with malignant solid tumors (cancer)

Healthy patients Cancer patients P value

Class

Bacilli 2.5 ± 3.4 12.7 ± 16.4 0.050

Bacteroidia 1.9 ± 3.2 1.2 ± 1.5 0.812

Clostridia 66 ± 30.5 57.1 ± 32.6 < 0.0001

Erysipelotrichia 7 ± 9.7 6.1 ± 4.3 0.925

Gammaproteobacteria 18.3 ± 35.8 19.9 ± 38.2 0.925

Verrucombicrobiae 3.3 ± 4.9 1.6 ± 3.4 0.812

Order

Bacteroidales 1.9 ± 3.2 1.2 ± 1.6 0.812

Clostridiales 66 ± 30.5 57.1 ± 32.6 < 0.0001

Enterobacteriales 18.2 ± 35.8 19.9 ± 38.1 0.926

Erysipelotrichales 7 ± 9.7 6.1 ± 4.3 0.926

Lactobacillales 2.5 ± 3.3 12.7 ± 16.4 0.052

Verrucomicrobiales 3.3 ± 4.9 1.6 ± 3.4 0.812

Family

Akkermansiaceae 3.3 ± 4.9 1.6 ± 3.4 0.677

Clostridiaceae 1 0.5 ± 1 6.9 ± 14 0.188

Enterobacteriaceae 18.2 ± 35.8 19.9 ± 38.1 0.926

Erysipelotrichaceae 7 ± 9.7 6.1 ± 4.3 0.863

Eubacteriaceae 0 ± 0.1 2.4 ± 5 0.007

Lachnospiraceae 54.2 ± 27.3 35.9 ± 32.5 0.562

Lactobacillaceace 0 ± 0.1 5.6 ± 14.7 0.010

Peptostreptococcaceae 1.2 ± 2.4 6.6 ± 11.7 0.214

Ruminococcaceae 9.2 ± 7.3 3.4 ± 3.6 0.214

Streptococcaceae 2.4 ± 3.2 6.5 ± 10 0.265

Genus

Agathobacter 1+2.9 1.7 ± 3.5 0.724

Akkermansia 3.3 ± 4.9 1.6 ± 3.4 0.715

Anaerostipes 1.7 ± 1.7 2.5 ± 4.5 0.724

Blautia 30 ± 16.6 14.1 ± 13.2 0.220

Cantenibacterium 2.6 ± 8.2 0.2 ± 0.6 < 0.001

Clostridium 0.5 ± 1 7.9 ± 15 0.020

Dorea 3 ± 3.1 3.7 ± 5.5 < 0.0001

Erysipelotrichaceae 2.6 ± 3.8 1.8 ± 4.2 < 0.0001

Escherichia Shigella 18.2 ± 35.8 18.5 ± 38.7 0.986

Eubacterium 9.7 ± 6.7 7.7 ± 11.3 0.765

Intestinibacter 0 ± 0 2.8 ± 6 0.004

Lachnoclostridium 1.8 ± 2.1 2.8 ± 4.9 0.715

Lactobacillus 0 ± 0.1 5.6 ± 14.7 0.005

Romboutsia 1.2 ± 2.4 3.4 ± 6 0.497

Ruminococcaceae 2.9 ± 2.7 1.1 ± 0.8 0.175

Ruminococcus 4.2 ± 4 2.4 ± 3.6 0.561

Streptococcus 2.3 ± 3.2 6.5 ± 10 0.276

Subdoligranulum 3.7 ± 3.5 1.8 ± 2.7 < 0.0001

Species

Agathobacter sp. 1 ± 2.9 1.7 ± 3.5 0.794

Akkermansia sp. 3.3 ± 4.9 1.6 ± 3.4 0.732

(To be Continued)
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(Continued)

Anaerostipes sp. 1.1 ± 1 1.5 ± 2.4 0.799

Blautia sp. 28.2 ± 16.2 13.3 ± 12.6 0.197

Catenibacterium sp. 2.6 ± 8.2 0.2 ± 0.6 < 0.001

Clostridium perfringens 0 ± 0 2.1 ± 6.6 < 0.001

Clostridium sp. 0.5 ± 1 2.8 ± 5 0.147

Dorea Longicatena 1.1 ± 1.4 1.1 ± 1.9 0.159

Dorea sp. 1.8 ± 2.2 2.4 ± 3.6 0.814

Erysipelotrichaceae sp. 2.6 ± 3.8 1.8 ± 4.2 1.925

Escherichia coli 18.2 ± 35.7 18.5 ± 38.6 0.986

Eubacterium sp. 9.7 ± 6.7 7.7 ± 11.3 0.799

Intestinibacter sp. 0 ± 0 2 ± 4.7 0.002

Lachnoclostridium sp. 1.8 ± 2.1 2.8 ± 4.8 0.732

Lactobacillus salivarius 0 ± 0 3.8 ± 12.1 < 0.001

Romboutsia sp. 1.1 ± 2.3 3.1 ± 5.5 0.503

Ruminococcaceae sp. 2.9 ± 2.7 1.1 ± 0.8 0.159

Ruminococcus sp. 3.6 ± 3.4 1.2 ± 1.1 0.147

Streptococcus salivarius 0.7 ± 1.4 1.5 ± 2.9 0.646

Streptococcus sp. 0.5 ± 0.8 1.9 ± 2.7 0.147

Subdoligranulum sp. 3.7 ± 3.5 1.8 ± 2.7 < 0.0001

Taxa below average relative abundance of 1% are excluded.

responder (stable) (n = 5) microbiome analysis was 
conducted. The two groups of subjects had no 
significant differences at the phylum level. The alpha 
diversity at the class level (Shannon and Inverse 
Simpson) were significantly different between the two 
groups (P < 0.05). The Shannon value for the stable 

group was 1.08 ± 0.366, while it was 0.441 ± 0.136 for 
the responder group. Additionally, the Inverse Simpson 

was 2.309 ± 0.809 for the stable group, but it was 1.235 

± 0.125 for the responders. Clostridia was the only taxa 
that showed significant differences between the groups, 
with higher levels noted in the responder group (P < 
0.05) (Table 5). At the order level alpha and beta 
diversity were significantly different between the 
responder group compared to the stable group. The 
order Clostridiales was more dominant in the fecal 
bacterial communities of the responder group 
(Figure 3B). The Shannon value for the stable group was 

1.09 ± 0.369, while it was 0.443 ± 0.136 for the 
responder group. Meanwhile, the Inverse Simpson was 

2.311 ± 0.810 for the stable group, but 1.235 ± 0.124 for 
the responder group. In the responder group 
significantly higher levels of Clostridales were observed 
(P < 0.05) (Table 5). At the family level, significantly 
lower levels of Streptococcoceae were observed in the 
responder group (Table 5).

At the genus level, the two groups of patients showed 
significant differences in the following 8 genera (P < 
0.05): whereas Blautia, Christensenellaceae, Clostridium, and 
Dorea were higher in the responder group, Erysipelo-

trichaceae, Streptococcus, Anaerostipes, and Subdoligranulum 
were higher in the stable group (Table 5). At the species 
level, the two groups of patients showed significant 
differences in the following 8 species (P < 0.05): whereas 
Blautia sp., Christensenellaceae sp., and Dorea longicatena were 
higher in the responder group, Erysipelotrichaceae sp., 
Ruminococcus gnavus, Streptococcus sp., Anaerostipes sp., and 
Subdoligranulum sp. were higher in the stable group 
(Table 5).

DISCUSSION

The primary goal of this study was to establish the 
feasibility of conducting a pilot study to investigate the 
immune biomarkers and fecal microbiome signature in 
groups of healthy subjects vs. subjects with solid 
malignancies, and in a small group of patients with solid 
malignancies who responded differently to immuno-
therapy at the local community cancer center. We tested 
the hypothesis that differential blood immune 
biomarkers and fecal microbiome profiles will be 
identified in this study. Our results collectively support 
this hypothesis.

For immune biomarker analysis, we selected 100 makers 
based on their roles in cancer biology, angiogenesis, 
immune responses, and inflammation. We analyzed their 
levels by 2 independent methods so that consistent and 
substantial differences between the compared groups 
could be identified. Based on fold change analysis, we 
identified significantly higher levels of 15 immune 
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Table 5: Taxonomic abundance in fecal samples collected from existing cancer patients on immunotherapy who 
were stable non-responders vs. responders

Class Stable non-responder patients Responder patients P value

Bacilli 7.7 ± 10.3 2.4 ± 1.9 0.122

Bacteroidia 7 ± 6.1 2.1 ± 2.7 0.154

Clostridia 64.3 + 15.8 89.9 ± 4.8 0.016

Erysipelotrichia 10.4 ± 6.7 4.1 ± 4.3 0.122

Gammaproteobacteria 2.2 ± 4.1 0.5 ± 0.7 0.141

Verrucombicrobiae 5.2 ± 9.3 0.2 ± 0.3 0.122

Order

Bacteroidales 7 ± 6.1 2.1 ± 2.7 0.160

Clostridiales 64.3 ± 15.8 89.9 ± 4.8 0.016

Enterobacteriales 2.1 ± 4.1 0.5 ± 0.7 0.160

Erysipelotrichales 10.4 ± 6.7 4.1 ± 4.3 0.122

Lactobacillales 7.7 ± 10.2 2.4 ± 1.9 0.122

Verrucomicrobiales 5.2 ± 9.3 0.2 ± 0.3 0.122

Family

Akkermansiaceae 5.2 ± 9.3 0.2 ± 0.3 0.160

Bacteroidaceae 3.9 ± 3.1 1 ± 1.2 0.160

Christensenellaceae 1.7 ± 1.9 2.2 ± 2.8 0.917

Clostridiaceae 1 0.2 ± 0.4 6.1 ± 12.2 0.160

Enterobacteriaceae 2.1 ± 4.1 0.5 ± 0.7 0.253

Erysipelotrichaceae 10.3 ± 6.7 4.1 ± 4.3 0.160

Lachnospiraceae 46 ± 16.9 63 ± 26.3 0.253

Peptostreptococcaceae 5.5 ± 11.8 4.8 ± 7.9 0.919

Rikenellaceae 1.5 ± 1.7 0.6 ± 1 0.581

Ruminococcaceae 10 ± 5.6 11.3 ± 13.8 0.917

Streptococcaceae 7.5 ± 10.2 0.9 ± 0.4 0.0197

Genus

Akkermansia 1.5 ± 1.7 0.2 ± 0.3 0.124

Alistipes 1.5 ± 1.7 0.6 ± 1 0.575

Anaerostipes 5.1 ± 4.3 0.7 ± 0.5 0.008

Bacteroides 3.9 ± 3.1 1 ± 1.2 0.124

Blautia 21.3 ± 5.6 35.4 ± 13.8 0.020

Christensenellaceae 1.7 ± 1.9 2.2 ± 2.8 3.226e-05

Clostridium 0.4 ± 0.4 6.2 ± 12.1 0.020

Dorea 1.1 ± 2 3.3 ± 4.6 8.967e-87

Erysipelatoclostridium 5.7 ± 6.2 2.7 ± 5.1 0.575

Erysipelotrichaceae 1.8 ± 2.1 0.6 ± 0.7 1.537e-49

Eubacterium 2.3 ± 2.2 6.1 ± 2.6 0.133

Lachnoclostridium 5.8 ± 9.9 9.9 ± 12.3 0.632

Romboutsia 5.2 ± 11.3 3.5 ± 5.4 0.785

Ruminococcaceae 3.3 ± 2.4 5.3 ± 7.2 0.575

Ruminococcus 6.7 ± 4.5 7.6 ± 5.7 0.785

Streptococcus 7.5 ± 10.2 0.9 ± 0.4 0.005

Subdoligranulum 3.2 ± 3 2 ± 3.5 9.586

Species

Akkermansia sp. 5.2 ± 9.3 0.2 ± 0.3 0.114

Anaerostipes sp. 4.1 ± 3.9 0.5 ± 0.4 0.005

Bacteroides sp. 2.3 ± 2.3 0.5 ± 0.3 0.114

(To be Continued)
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(Continued)

Blautia sp. 20.7 ± 5 34.4 ± 13.5 0.014

Christensenellaceae sp. 1.7 ± 1.9 2.2 ± 2.8 1.970e-05

Dorea longicatena 0.6 ± 1.3 1.6 ± 2.8 7.634e-42

Erysipelatoclostridium sp. 5.7 ± 6.2 2.7 ± 5.1 0.6197

Erysipelotrichaceae sp. 1.8 ± 2.1 0.6 ± 0.7 6.437e-49

Eubacterium sp. 2.3 ± 2.2 6.1 ± 2.6 0.133

Lachnoclostridium sp. 5.8 ± 9.9 9.9 ± 12.3 0.632

Romboutsia sp. 4.8 ± 10.5 3.4 ± 5.3 0.812

Ruminococcaceae sp. 3.3 ± 2.4 5.3 ± 7.1 0.6197

Ruminococcus gnavus 1.8 ± 2.8 0 ± 0.1 0.013

Ruminococcus sp. 4.3 ± 3.8 5.7 ± 3.3 0.632

Ruminococcus torques 0.6 ± 1.4 1.6 ± 2.4 0.654

Streptococcus sp. 5.9 ± 10.6 0.3 ± 0.2 0.003

Subdoligranulum sp. 3.2 ± 3 2 ± 3.6 1.0697e-23

P < 0.05, and taxa below average relative abundance of 1% are excluded.

biomarkers in the blood of newly diagnosed cancer 
patients with malignant solid tumors compared to 
healthy subjects without solid malignant tumors: IGF-1, 
MPIF-1, IL-12p70, IL-10, CXCL16, IL-6, RANTES, 
MCP-1, IP-10, IL-1a, TIMP-2, HCC-4, PF4, OPN, and 
TIMP-1. Out of these, based on SAM, only 7 immune 
markers met the criteria of differential expression 
between healthy vs. cancer patients with substantially 
higher levels in the newly diagnosed patients with solid 
malignancies: IP-10 (CXCL10), MCP-1 (CCL2), HCC-4 
(CCL16), PF4 (CXCL4), OPN, TIMP-1, TIMP-2. Wei et 
al. (2017) and Koopman et al. (2004) reported that higher 
serum OPN level was a promising diagnostic marker of 
pancreatic adenocarcinoma.[43,44]

There are several previous studies that report the utility 
of some of the above identified immune markers in the 
diagnosis and prognosis of specific cancers. Hefler et al. 
(1999) reported that higher blood MCP-1 distinguished 
benign from malignant ovarian cancer.[45] Narita et al. 
(2016) reported higher IP-10 and MCP-1 levels were 
associated with breast cancer metastasis.[46] Sorensen et 
al. (2007) reported that high blood levels of TIMP-1 in 
colorectal cancer reduced survival chances and predicted 
poor response to chemotherapy.[47] Miyake et al. (2014) 
reported that higher TIMP-2 levels were related to good 
response to sunitinib treatment in renal cell carcinoma 
patients. It is important to note that the cancer patients 
included a variety of solid malignant tumors.[48] 
Therefore, these immune markers are associated broadly 
with the diagnosis of new malignant tumors, rather than 
a specific type of cancer. Thus, they may represent the 
baseline differential immune markers to consider 
evaluating the impact of and response to immune 
therapy in patients with malignant solid tumors in future 
studies.

We found that 10 immune biomarkers were significantly 
higher in the cancer patients undergoing immunotherapy 
compared to the newly diagnosed patients: IGF-1, HCC-
4, MIP-3b, IP-10, ICOS, CD28, PD-1, RANTES, OPN, 
NAP-2. Notably, IGF-1, HCC-4, IP-10, RANTES, 
OPN may be persistent biomarkers of solid malignant 
tumors as they are noted at high levels in newly 
diagnosed patients not yet treated, as well in patients 
who are already on immunotherapy. The other 5 
biomarkers (MIP-3b, ICOS, CD28, PD-1 and NAP-2) 
were present at substantially higher levels among the 
treated patents only but not in untreated newly 
diagnosed patients with solid malignant tumors. This 
suggest that they may represent biomarkers that appear 
upon immunotherapy.

Since the existing patients on immunotherapy consisted 
of 2 subgroups based on their response to treatment, we 
conducted analysis between the responder group of 
patients vs. the stable group of patients. One patient was 
a non-responder progressor, and therefore was not 
included in this analysis. With this limited analysis with a 
very small sample size (n = 4–5), we found candidate 
immune markers associated with response to immuno-
therapy in cancer patients in this pilot study. Based on 
fold change analysis, higher levels of CXCL16 and IL-8 
were noted in responders to immunotherapy. Our 
finding on IL-8 contrasts with a previous study that 
report that higher levels of IL-8, are associated with 
n o n - r e s p o n s e  i n  m e l a n o m a  p a t i e n t s  o n  
immunotherapy.[49] In our cohort, there were no 
melanoma patients. Further studies are needed to 
evaluate whether the relationship between IL-8 levels 
and response to immunotherapy is different in different 
types of cancers.
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The chemokine CXCL16 that uses the receptor CXCR6 
was consistently identified to be significantly higher 
levels in the responder in both fold change analysis and 
the SAM. There are no reports of CXCL16 associated 
with response to immunotherapy in cancer. Previous 
studies show that higher levels CXCL16 is expressed by 
the breast cancer tissue upon radiation therapy, and it 
plays a critical role in recruiting NK cells to the cancer 
site.[50] In a mouse model of colon cancer, CXCR6 (the 
receptor for CXCL16) was required for intra-tumoral 
CD8 T cell killer activity.[51] Thus, CXCL16 may be an 
important biomarker of protection from cancer.

Our data analysis based on SAM show that there were 
21 other markers besides CXCL16 that were present at 
significantly higher levels in responder group. Theis 
included cytokines (IFN-g, IL-17F, IL-6, TSLP, IL-31, 
MIF, LIF, IL-1a, IL-23 and TNF-b), chemokines [IP-10 
(CXCL10), I-TAC (CXCL11), CTACK (CCL27), MIP-
3b (CCL19), MCP-2 (CCL8), MPIF-1 (CCL23), SDF-1a 
(CXCL12)], an antigen presenting cell surface molecule 
(B7-2), and growth factors (BTC, ANG-2). Given the 
sample size used in this study, it would be necessary to 
follow-up on these markers and establish or rule out 
their role as biomarker of successful response to 
immunotherapy in future studies.

In this pilot study we found interesting differences in the 
fecal microbiome composition in newly diagnosed 
patients with malignant solid tumors compared to 
healthy subjects without solid tumors. We found that at 
both the genus as well as the species level Clostridium 
perfringens, Intestinibacteria sp., and Lactobacillus salivarius 
were higher in cancer subjects. It was surprising that 
Lactobacillus, a genus that is associated with probiotic 
activities is higher in cancer subjects. Probiotic bacteria 
are generally associated with health and protection from 
diseases including colon cancer.[13] Nevertheless, our 
finding is consistent with recent studies that show that 
Lactobacillus may promote certain type of cancers. For 
example, a recent report shows that Lactobacillus can alter 
macrophage function in pancreas and promote cancer 
growth.[52] Another study shows that gastric cancer is 
associated with overgrowth of Lactobacillus bacteria in the 
stomach.[19]

Our very limited analysis of microbiome in responder vs. 
stable group of patients showed that Blautia sp., 
Christensenellaceae sp., and Dorea longicatena were higher in 
the responder group. Erysipelotrichaceae sp., Ruminococcus 
gnavus, Streptococcus sp., Anaerostipes sp., and Subdoligranulum 
sp. were higher in the stable group. There are no reports 
of microbiome profile in responder vs. non-responders 
to immunotherapy across the solid cancers as a group.

Previous reports all studied microbiome changes in 
specific types of solid malignancies as follows: Peng et al. 

(2020) reported that Eubacterium, Lactobacillus, and 
Streptococcus, were positively associated with anti-PD-1/
PD-L1 response across different GI cancer types.[18] 
Other studies showed that responders to anti-PD1 
therapy in cancers show abundance of bacteria as 
follows: Akkermansia In NSCLA and RCC, hepato-
cellular carcinoma;[20,22] Clostridiales in melanoma,[23] 
Ruminococcaceae in melanoma,[23] and hepatocellular 
carcinoma;[20] Faecalibacterium in melanoma;[23] Bifidobac-
terium in melanoma;[24] Collinsella in melanoma;[24] Entero-
coccus in melanoma;[24] Alistipes putredinis in NSCLC;[21] 
Bifidobacterium longum in NSCLC and Prevotella copri in 
NSCLC.[21] It is important to note that these are specific 
types of solid malignancies, and our feasibility study 
patients included several types of solid malignancies. 
Therefore, comparison with these results will not be 
meaningful at this time. We noted increased Ruminoccous 
gnavus in stable patients but not in the responder group 
and our study did not separately study cancer types. We 
did not note any differences in Akkermansia between 
responder vs. stable groups of patients in our study.

It is very important to note that the comprehensive list 
of gut bacteria associated with beneficial response to 
immunotherapy in cancers is only beginning to be 
understood. Furthermore, the association of bacteria can 
differ in different cohorts, and even within a given type 
of cancer. The approach of looking at gut bacteria 
broadly in responders vs. stable patients with solid 
malignant tumors on immunotherapy has not been 
reported before.

The primary goal of our pilot study was to demonstrate 
the feasibility of conducing this type of cancer research 
in a community cancer center. Given the budget and 
resources available, we recruited patients with several 
types of solid malignancies for this study. Our results 
demonstrate that despite the broad approach we used 
for this study, surprisingly significant differences were 
noted in both biomarkers and microbial profile. Kim et 
al. (2021) reported validation of a combined biomarker 
for prediction of response to checkpoint inhibitors in 
patients with advanced cancer of several types (i.e., pan-
cancer patients).[5] This raises the interesting possibility 
that differential biomarkers might become available that 
identify solid malignant tumors as a group (i.e., pan-
cancer biomarker concept). However, future large-scale 
studies are needed to test this hypothesis. In such future 
studies, it will also be important to establish correlations 
among specific fecal microbiome, specific immune 
marker (e.g., cytokine, chemokine, growth factors) and 
the immunotherapy outcome because such correlations 
will provide insight into the mechanisms underlying the 
impact of immunotherapy.

The significance of biomarker discovery including 
microbiome markers in precision and personalized 
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Figure 2. Analysis of immune biomarkers in subjects with malignant solid tumors receiving immunotherapy (Existing patients on immunotherapy): 
Comparison of responder (E1239) vs. stable (456810) subgroups. A. Plot of PC1 and PC2 values in responders (E1239) and stable (E456810) subgroups of 
existing patients treated with immunotherapy (E). B. Heatmap of 99 biomarkers in responders (E1239) and stable (E456810) subgroups of existing patients 
treated with immunotherapy (E). C. Volcano plot comparing the fold change and P value of 99 biomarkers in responders (E1239) and stable (E456810) 
subgroups of existing patients treated with immunotherapy (E). Each point represents a marker. D. Heatmap of 21 differentially-expressed biomarkers 
between responders (E1239) and stable (E456810) subgroups of existing patients treated with immunotherapy (E). E. PCA plots of 21-differentially 
expressed biomarkers between responders (E1239) and stable (E456810) subgroups of existing patients treated with immunotherapy (E). PCA: principal 
component analysis.

medicine in general and in oncology, cannot be 
understated. There are extensive efforts underway to 
identify specific biomarkers using omics technology and 
big data science approaches.[2–4] There are several reasons 
why this is an exciting future for the medical field 
including the following: (i) identification of superior 

biomarkers of effective vs. in effective and even harmful 
responses to treatment regimens will advance the 
precision medicine objective in immunotherapy and 
other types of treatments; (ii) combination of traditional 
markers and novel blood and fecal markers may assist in 
improving classification, and grading of cancers; for 
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Figure 3. Analysis of beta diversity of fecal microbiome. A. Beta diversity based on the Sorensen dissimilarity metric. The fecal bacterial communities of 
patients with (cancer) (new patients, n) differed from those of subjects without (healthy) malignant colorectal tumors (healthy, h). B. Beta diversity based on 
the Bray-Curtis dissimilarity metric. The fecal bacterial communities of cancer patients on immunotherapy who were responders to immunotherapy (Res) 
included more Clostridiales compared to those of stable non-responder patients (No). PC: principal component.

example, Li et al. (2017) reported that conventional 
histopathological classification of breast cancer falls 
short of providing adequate prognostic and predictive 
power, and biomarkers may change this situation 
favorably;[9] and (iii) biomarkers may help in decision 
making for treatment duration for costly and long-lasting 
types of regimens.[2–4,6,7]

In conclusion, here we report the successful completion 
of a pilot study demonstrating the feasibility of 
conducting a research study in the local community 
cancer center in Lansing in collaboration with the 
Michigan State University. Therefore, this pilot study has 
established the feasibility for conducting a future larger 
study to evaluate whether immune and microbiome 
markers can predict effective vs. ineffective responses to 
immunotherapy and whether either immune biomarkers 
or microbe markers or both may have therapeutic 
potential.

SUPPLEMENTARY INFORMATION

Figure S1. Analysis of immune biomarkers in subjects 
without malignant tumors (healthy) vs. existing cancer 
patients on immunotherapy.

Supplementary information of this article can be found 
online at https://www.hksmp.com/journals/gfm/articl
e/view/529/787
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