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model explains the evolution of this disease, in which 
an initial insult in the bronchi, often on a background of 
impaired mucociliary clearance or bactericidal activity, results 
in persistence of microbes in the sinobronchial tree, and 
microbial colonization. Microbial overgrowth then causes 
infection and chronic inflammation, resulting in tissue 
damage, and impaired mucociliary motility. This then leads 
to more infection with a cycle of progressive inflammation 
causing lung damage.[1‑3]

Subsequent antimicrobial treatments can favor the 
development of resistance and the appearance of 
multidrug‑resistant (MDR) bacteria. Unlike in the case of 

ABSTRACT
Bronchiectasis is a common progressive respiratory disease characterized by exacerbations 
and recurrent chest infections with high morbidity and reduced quality of life. Cole’s vicious 
cycle model explains the evolution of this disease, in which an initial insult in the bronchi, 
often on a background of impaired mucociliary clearance or bactericidal activity, results 
in persistence of microbes in the sinobronchial tree and microbial colonization. Microbial 
overgrowth then causes infection and chronic inflammation, resulting in tissue damage, and 
impaired mucociliary motility. Subsequent antimicrobial treatments, microbiota interactions, 
and hypermutation can favor the development of resistance and the appearance of 
multidrug‑resistant (MDR) bacteria. In this paper, we summarize the current knowledge 
on how bacteria become MDR in noncystic fibrosis bronchiectasis, and which are the 
most common bacterial pathogens, excluding Mycobacteria.
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INTRODUCTION

Bronchiectasis is a suppurative lung disease which is 
defined by a permanent and abnormal dilatation of 
the bronchi and is usually diagnosed on axial images of 
high‑resolution computed tomography scans of the chest. 
It can be considered the result of a variety of different 
factors, although most cases are idiopathic. Bronchiectasis 
is a common progressive respiratory disease characterized 
by exacerbations and recurrent chest infections with high 
morbidity and reduced quality of life. Cole’s vicious cycle 
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cystic fibrosis, there is scarce information about MDR in 
noncystic fibrosis bronchiectasis (NCFB), but evidence from 
recent studies shows that these bacteria have a considerable 
impact on exacerbations and community‑acquired 
pneumonia.[4]

In this review, we will talk about bacteria involved in these 
processes and how they can become MDR, excluding 
Mycobacteria.

MICROBIOLOGY OF NONCYSTIC FIBROSIS 
BRONCHIECTASIS

Until recently, the lower respiratory tract  (LRT) was 
considered a sterile area that could be colonized briefly by 
microorganisms from the oropharynx or chronically in lungs 
with some underlying condition.[5‑7] This concept has been 
modified following the development of new‑generation 
molecular biology techniques, particularly the massive 
sequencing of regions of 16S ribosomal RNA, which made it 
possible to detect and identify microorganisms that normally 
do not grow on routine culture media.

Each person has a unique microbiota, with differences 
in species and proportions that is acquired at the time 
of delivery or even before birth, through the placenta.[8,9] 
Certain species are found in most healthy individuals at a 
higher rate and are called core microorganisms; the rest are 
known as satellite microorganisms.

Segal et al. demonstrated that the microbiota of the LRT 
differs from the higher respiratory tract in composition 
and number.[10] Supraglottic core microbiota included 
larger numbers of Gram‑negative anaerobes as (Veillonella 
and Prevotella), while the pulmonary core microbiota 
had Gram‑positive bacteria  (Propionibacterium and 
Staphylococcus). In addition, the flora of the oropharynx 
was fifty times more abundant than that of the LRT. 
However, there is continuity between the microbiota of 
both anatomical sites that would be part of an interactive 
gastrointestinal respiratory axis.[7,11]

The study of the microbiota in chronic diseases such as 
NCFB has become a crucial issue and is changing the 
perspective of pathogenesis. In fact, numerous articles find 
associations between alterations in the microbiota and 
illness.[5,12,13]

The role of the microbiota as an inducer or maintainer 
of chronic respiratory diseases is gaining in importance. 
Moreover, damage to the lung tissue may begin years before 
its effects are detected. Lal et al. observed in two cohorts 
of newborns that the differences in the microbiota at birth 
was the common factor  to developed bronchopulmonary 
dysplasia, regardless of birth weight, prematurity, and 
maternal antimicrobial intake, with a decrease in Firmicutes, 

especially Lactobacillus, and an increase in Proteobacteria, 
especially Enterobacteriaceae.[8] The scant effect of prior 
antibiotic consumption endorses other studies showing that 
the composition of the microbiota is stable and difficult 
to alter using antimicrobial treatments, although both the 
structure of the microbial community and the amount of 
each species are affected, especially anaerobes.[14,15] In any 
case, NCFB patients have complex polymicrobial microbiota 
with population densities similar to patients with cystic 
fibrosis.

In NCFB patients, Haemophilus spp., Pseudomonas spp., 
and Streptococcus spp. are the dominant microorganisms 
of the core microbiota although proportions vary between 
stable and exacerbation periods. While some studies link 
exacerbations with increased density of anaerobes, such as 
Veillonella, others find associations with multiple genres and 
decreased diversity. Adaptive changes of the main pathogens 
in the core microbiota may also trigger exacerbations.[12,14,15]

Furthermore, the microbiota modulates the inflammatory 
response. A “healthy” microbiota is associated with a balance 
between inflammation (Th17) and regulation (ThReg) while 
an abnormal microbiota is associated with an inflammatory 
state sustained by the direct action of the microorganisms 
themselves or the metabolites produced.[16]

Thus, the NCFB microbiota is altered and can determine 
disease progression. Haemophilus influenzae and Pseudomonas 
aeruginosa play an important role as core microbiota in 
NCFB. Both are found in patients with more exacerbations 
and worse evolution, and both influence the diversity of 
the accompanying microbiota. Interestingly, when one of 
them prevails, the other is absent or present in very small 
numbers.[15,17,18]

NONSPECIALIZED ANTIMICROBIAL RESISTANCE: 
BIOFILMS AND ESCAPE MECHANISMS

Microorganisms exhibit various strategies to survive in hostile 
environments. Two of these strategies are the production of 
biofilms and small colony variants (SCVs), both involved in 
chronicity of infections and antimicrobial treatment failure.

Microorganisms in nature live mainly in biofilms and only 
a small percentage live as planktonic bacteria. Within 
a biofilm, there are multiple environments and even 
specialized cells; some authors therefore consider this type 
of organization a multicellular organism.[19,20]

Furthermore, expression of virulence factors, membrane 
proteins, nutrient acquisition, metabolic pathways, and 
antimicrobial resistance is very different from planktonic 
cells. This is achieved through cooperation and coordination 
among community members, through chemical signals 
known as quorum sensing. This arrangement allows 
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microorganisms to have a greater amount of genetic, 
phenotypic, and metabolic resources.

Clinically, it is important to note that biofilms are a 
therapeutic challenge because such structures are resistant to 
elimination: Phagocytosis is inhibited by matrix components, 
and antimicrobials cannot act for being inactivated, 
presenting a poor diffusion or not finding metabolically 
active cells on which to act.[19,21,22]

In addition, some pathogenic species such as Candida spp., 
S. aureus, and P. aeruginosa form biofilms more rapidly in the 
presence of polymorphonuclear leukocytes and take advantage 
of neutrophil extracellular traps (NETs) to build biofilms.[21,23]

The ultimate goal of biofilms is survival; therefore, a strong 
immune response would be against the interests of its 
members. Intriguingly, the interaction between species 
can reduce the expression of virulence factors, such as 
Candida spp. on P. aeruginosa, or modulate the inflammatory 
response, thereby altering both local inflammation and 
phagocytosis.[23‑25]

SCV appear spontaneously but are selected in response to 
stress, whether environmental, immune, or antimicrobial. 
SCV microorganisms present a slower rate of growth, 
express fewer virulence factors, respond worse to quorum 
sensing molecules, produce fewer antigenic molecules, 
and interestingly, invade host cells more effectively and 
survive in intracellular environments, even escaping 
from phagosomes.[26,27] These variants are responsible 
for recolonization by pathogenic microorganisms after 
antimicrobial treatments, usually because they are too short 
or ineffective to remove them.

BACTERIAL PATHOGENS IN NONCYSTIC 
FIBROSIS BRONCHIECTASIS

According to the current data, NCFB microbiota associated 
with a worse evolution is mainly dominated by two 
microorganisms: P. aeruginosa and H. influenzae. Nevertheless, 
recent investigations have provided a broader view and shown 
that other microorganisms are involved in NCFB progression, 
exacerbation, and prognosis, especially MDR.[4,28]

The risk of MDR in NCFB seems different depending on 
the origin of the microorganism. Thus, those adapted to the 
respiratory tract such as S. pneumoniae and H. influenzae 
are rarely MDR and are easier to eradicate. In contrast, 
those that come from different environments, such as 
Enterobacteriaceae, Gram‑negative nonfermenters, and 
S. aureus, develop resistance and are associated with worse 
clinical conditions, exacerbations, and community‑acquired 
pneumonia.[4,28] A 1‑year study conducted on sputa from 
NCFB patients at hospital La Fe, Valencia, Spain, detected 
23.2%, 5.4%, and 7.7% of MDR among S. aureus, P. aeruginosa, 

and S. pneumoniae, respectively; Achromobacter xylosoxidans 
and Stenotrophomonas maltophilia were also isolated, and all 
were considered MDR (personal communication).

Pseudomonas aeruginosa
P. aeruginosa is an opportunistic pathogen often associated 
with colonization and infection, higher number of hospital 
admissions, older patients, worse lung function, increased 
mortality, and a preference for infecting the upper lung 
lobes.[15,29,30]

Its virulence factors facilitate survival in the lung, where 
its presence triggers a global response for its elimination. 
Virulence factors are in the bacterial membrane (pili, flagella, 
and lipopolysaccharide), inoculated directly into human cells 
using type III and IV secretion systems, or excreted to defend 
itself or get nutrients (alginate, exotoxin A, phospholipase, 
exoproteases, rhamnolipids, etc.). Exoproteases include 
elastase, a zinc‑dependent metalloenzyme capable of breaking 
down different proteins found in the extracellular matrix, 
cytokines and chemokines, and pulmonary surfactant. All 
these allow P. aeruginosa to survive in a harsh environment, 
avoid phagocytosis, and cause more invasive infections.[31‑34]

Moreover, this microorganism responds to human endocrine 
signals. In particular, it was noted that noradrenaline 
activates the expression of virulence factors, and transforms 
P. aeruginosa into an invasive phenotype.[35] Hypothetically, 
it could link stress to NCFB exacerbations.

Of note, P. aeruginosa isolates from patients with an NCFB 
presented a different phenotype from cystic fibrosis or wild 
strains, exhibiting an inhibition of virulence factors.[36]

This microorganism presents intrinsic resistance to many 
antibiotics, mainly by modifying enzymes, impermeability, 
or efflux pumps. Mutations, loss of porins  (OprD), or 
acquisition of plasmids with resistance determinants such 
as metallo‑β‑lactamases, make this microorganism a real 
threat, leaving very few active drugs against it.[37] Despite 
this and the high rates of colonization of this microorganism, 
the emergence of MDR is lower than expected and a high 
percentage of patients achieve eradication.[29] However, 
it has been observed that patients with NCFB have a 
high prevalence of hypermutable strains that leads to the 
development of resistance mechanisms and justifies age and 
antimicrobial treatments as selective factors for MDR.[36,38] 
It would be advisable to investigate whether more virulent 
MDR clones with a worse prognosis are circulating among 
NCFB patients as described in patients with cystic fibrosis.[39]

Haemophilus influenzae
H. influenzae is related to infections and colonization in 
younger patients with better lung function and a preference 
for infecting the lower lung lobes.[12,17,30]
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H. influenzae has different mechanisms that allow it to 
survive in the lung such as the secretion of IgA proteases, 
adhesion proteins to lung epithelium  (HIF, Hmw1/2, 
Hap, Hia/Hsf, OMP‑2.5, OAPA, PCP, proteins E, and F), 
molecules that allow it to survive phagocytosis and produce 
invasive infections (msfA1‑14), stress response systems that 
improve survival in biofilms (DPS), and the production of 
outer membrane vesicles that act as decoys for the immune 
response.[40‑45]

Unlike P. aeruginosa, this opportunist commensal of 
the normal flora seems designed to thrive in the airway 
causing minimal damage. Patients with the prevalence of 
H. influenzae have fewer and milder exacerbations than 
patients with P. aeruginosa and require less hospitalization.[17] 
Surprisingly, patients with the prevalence of H. influenzae have 
higher levels of tissue metalloproteinase (MMP‑2, MMP‑12, 
and MMP‑8 activity), which degrades the extracellular matrix 
and causes local damage, than patients with the prevalence of 
P. aeruginosa. Nevertheless, both groups of patients presented 
higher proteolytic activity than NCFB patients with other 
bacteria and healthy individuals.[46,47] The induced proteolytic 
activity may be related to the alleged involvement of 
H. influenzae in the development of NCFB.[48] Alternatively, 
the proteolytic activity of bacterial origin may be important 
in NCFB with the prevalence of P. aeruginosa.

H. influenzae has intrinsic resistance to macrolides, 
lincosamides, streptogramin B, and ketolides associated 
with an acrAB‑like efflux pump; although macrolides may be 
clinically effective, especially azithromycin. The prophylactic 
use of macrolides facilitates the acquisition of erm and mef 
genes (encoding ribosomal RNA methylases and efflux pumps, 
respectively) or promotes mutations that cause high‑level 
resistance to these antimicrobials.[49,50] H. influenzae can also 
acquire conjugative plasmids with antibiotic resistance genes, 
such as TEM or ROB β‑lactamases, or develop mutations as 
those described in GyrA and ParC, or PBP3, which makes 
it resistant to quinolones and β‑lactams, respectively.[51,52]

Hypermutable strains have been described in patients with 
cystic fibrosis although no studies have been carried out in 
patients with NCFB.[53]

Methicillin‑resistant Staphylococcus aureus
Methicillin‑resistant Staphylococcus  aureus  (MRSA) is a 
common and important pathogen involved in nosocomial 
and health‑care‑related infections. Pneumonia by this 
microorganism is clinically important because of its severity, 
the high incidence of complications and the increased 
mortality that is usually associated with inadequate initial 
antibiotic therapy.

MRSA has also emerged as an increasingly important cause 
of community‑acquired bacterial infection, and these strains 
frequently carry Panton–Valentine leukocidin genes.[54]

S. aureus has a number of mechanisms to evade the 
immune response. These include a capsule, surface 
proteins, exotoxins, and Panton–Valentine leukocidin. The 
capsule inhibits phagocytosis and promotes adherence to 
surfaces. Protein A, collagen adhesin, and staphylococcal 
clumping factor inhibit opsonization and complement 
activation. S. aureus also produces a wide array of 
extracellular toxins such DNAse, which breaks down NETs, 
or Panton–Valentine leukocidin, which specifically targets 
leukocytes and produces pores in their membrane, resulting 
in cell death.[55]

Resistance is acquired by horizontal transfer or chromosomal 
mutation.[56] Methicillin resistance is carried by the 
chromosome cassette mecA, which is integrated into orfX, 
a S. aureus gene of unknown function. This cassette codes 
a mutant PBP (PBP2a), which has low affinity for β‑lactams 
and makes these bacteria resistant to almost all agents in this 
group. Interestingly, bacteria with this gene produce better 
biofilms but are less virulent, a possible explanation for its 
survival in chronic lung diseases.[57]

This microorganism can asymptomatically colonize people 
and be part of the normal flora. Its interactions with the host 
and neighbor microbiota are complex; for example, S. aureus 
downregulates inflammation induced by P. aeruginosa by 
decreasing interleukin‑8.[58] Nevertheless, it has been related 
to exacerbations and community‑acquired pneumonia in 
NCFB.[4,28]

Streptococcus pneumoniae
S. pneumoniae is the leading cause of community‑acquired 
pneumonia worldwide and may be considered an 
airway specialist pathogen, but it is also associated with 
exacerbations in NCFB.[4] Beyond its well‑known virulence 
factors, such as pneumolysin, new pathogenic mechanisms 
are being discovered, including the upregulation of 
virulence factors in coinfections with respiratory syncytial 
virus.[59]

MDR are rare and one of the principal means of acquiring 
resistance factors are biofilm‑associated hyperrecombinant 
strains.[60,61] Exposure to antimicrobials and poor 
compliance are decisive in the development and selection 
of resistance.[62‑64]

Enterobacteriaceae
Enterobacteriaceae are important members of the gut 
microbiota that can be the cause of infections, most 
frequently by species of Escherichia, Klebsiella, Enterobacter, 
Proteus, Providencia, and Serratia. Outside their natural 
environment, they can behave differently and present 
more antimicrobial resistance mechanisms; for example, 
Escherichia coli isolated from respiratory samples tend 
to be more resistant.[65] MDR Enterobacteriaceae due to 
extended‑spectrum β‑lactamases or AmpC enzymes, and 
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those producing carbapenemases have spread throughout 
the world in recent decades. Many of these isolates are 
also resistant to other agents, such as fluoroquinolones 
or aminoglycosides. The very limited therapeutic options 
available for these organisms are a real challenge and 
although, once associated with nosocomial infections, they 
are now found in the community.[66]

An in‑depth study of Enterobacteriaceae is beyond the 
scope of this review, but these microorganisms are relevant 
in chronic obstructive pulmonary disease and NCFB 
exacerbations and are community‑acquired.[4,67]

Gram‑negative nonfermenters
Gram‑negative nonfermenters such as S. maltophilia and 
A. xylosoxidans are usually associated with cystic fibrosis. 
However, these microorganisms have been isolated in NCFB 
and pose a serious challenge due to their intrinsic resistance 
profiles, which makes them MDR pathogens.[68,69]

Effects of antimicrobial treatment on multidrug 
resistance
Long‑lasting antimicrobial treatment during the stable 
phase of NCFB aims to prevent acute exacerbations 
and slow the progression of the disease; but presents an 
important drawback: antimicrobial resistance can arise. 
Until recently, few studies focused specifically on NCFB; 
therefore, treatments were extrapolated from studies on 
cystic fibrosis ‑ some with clinically untoward results.[69‑72]

Recently, clinical trials suggest that the use of antibiotics 
for extended periods may decrease the symptoms, number 
of exacerbations, and slow reduction in forced expiratory 
volume in 1 s. Although results are disparate between studies, 
the development of resistance was a possible outcome in 
some trials; however, a Cochrane systematic review on this 
subject by Welsh et al. found no clear evidence to support 
this, mainly because of the heterogeneity of populations 
and the lack of stratification by microbiota composition and 
antimicrobials used.[73‑78]

Importantly, the analysis of these studies did not discriminated 
patients based on the dominant microorganism in their 
microbiota. P. aeruginosa is usually susceptible to most 
antimicrobials studied‑aminoglycosides, fluoroquinolones, 
or colistin‑, but it is not to macrolides, which were tested in 
many of these studies and obtained good results. This may 
be due to the effect of this group of antibiotics on other 
members of the microbiota, the inhibitory effect on alginate 
production and quorum sensing molecules, or its intrinsic 
immunomodulatory effects.[79]

With regard to exacerbations and community‑acquired 
pneumonia, identifying risk factors to predict the presence 
of MDR organisms is critical for initiating adequate 

antimicrobial therapies.[80] Several studies have identified 
various risk factors in patients with community‑acquired 
pneumonia that may be extrapolated to NCFB. Among these, 
age, prior antimicrobial treatments, recent hospitalization and 
institutionalization, colonization by MDR microorganisms, 
and chronic diseases are crucial.[81‑84]

CONCLUSION

Although few studies have evaluated the risk factors related 
to the emergence of MDR microorganisms in NCFB, we can 
reconstruct the evolutionary history from what we already 
know [Figure 1].

An alteration in the lower airway favors changes in the normal 
microbiota and the emergence of potentially pathogenic 
microorganisms. These would thrive to quantitatively 
displace other local microorganisms and become the main 
component of the microbiota. From here, a cycle of tissue 
destruction, infection, immune response, and inflammation 
would be established. This would induce the appearance of 
hypermutant microorganisms, SCV forms, and pathogenic 
biofilm generation (mucoid forms).

Added to this, vicious cycle is the selective factor of 
antimicrobials once clinical signs and symptoms appear. 
Microorganisms with increased tolerance or those that reside 
in areas where drugs fail to reach would be selected and after 
treatment ended, recolonize the lower airway and eventually, 
produce new exacerbations. Moreover, the elimination of the 
initial microbiota would allow the acquisition of nosocomial 
microorganisms. The end result would be a damaged lung 
colonized by MDR.
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Figure 1: Microbiota evolution toward antimicrobial 
multiresistance
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